[1]胡斌斌,倪晓军.基于RSSI测距室内定位改进质心算法[J].计算机技术与发展,2017,27(09):133-136.
 HU Bin-bin,NI Xiao-jun. An Improved Indoor Localization Algorithm of Centroid with RSSI[J].,2017,27(09):133-136.
点击复制

基于RSSI测距室内定位改进质心算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年09期
页码:
133-136
栏目:
应用开发研究
出版日期:
2017-09-10

文章信息/Info

Title:
 An Improved Indoor Localization Algorithm of Centroid with RSSI
文章编号:
1673-629X(2017)09-0133-04
作者:
 胡斌斌倪晓军
 南京邮电大学 计算机学院
Author(s):
 HU Bin-binNI Xiao-jun
关键词:
 接收信号强度指示定位神经网络锚节点修正算法
Keywords:
 RSSIlocalizationneural networkanchor nodesmodified algorithm
分类号:
TP301.6
文献标志码:
A
摘要:
 室内定位技术具有巨大的市场需求,但由于室内定位受到噪声、多径反射、温度、环境、阴影衰落等因素的影响,其定位精度显著降低.为了提高室内节点的定位精度,针对传统的质心定位算法精确度低的问题,提出了一种基于RSSI节点测距的改进质心定位算法.该算法对锚节点接收到的RSSI数据进行拟合,以此能够在BP神经网络基础上确定损耗模型参数值,采用改进的质心定位算法进行定位,并在原有的三点定位的基础上,通过节点之间的数学转换,将三点定位法改进为六点质心定位算法.为验证所提算法的有效性和可行性,基于Matlab仿真平台进行了仿真实验.仿真实验结果表明,相对于传统的质心定位算法,所提出的算法显著地提高了室内定位的精度.
Abstract:
 ndoor positioning technology is of great demand. However,owing to the influence of noise,multi-path reflection,temperature, environment and shadow fading,the accuracy of indoor positioning decreases greatly. In order to improve the positioning accuracy of inte-rior nodes,aimed at the problem of low accuracy of the traditional localization algorithm,an ameliorate triangle centroid localization algo-rithm based on RSSI is proposed,which is fitted to the values received by anchor node so that the parameter values of loss by BP neural network can be determined and then located with the ameliorate triangle centroid localization algorithm. Based on principle of three-point location the original three-point location algorithm has been modified to six-point centroid localization algorithm. In order to prove its ef-fectiveness and feasibility,the experiments for verification have been conducted with Matlab simulation platform which show that com-pared with traditional centroid localization algorithm,it greatly increases indoor positioning accuracy.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(09):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(09):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(09):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(09):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(09):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(09):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(09):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(09):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(09):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(09):47.
[11]程俊[],周礼争[],余敏[],等. 基于RSSI滤波的改进型泰勒级数室内定位算法[J].计算机技术与发展,2016,26(05):51.
 CHENG Jun[],ZHOU Li-zheng[],YU Min[],et al. Indoor Localization Algorithm of Improved Taylor Series Based on RSSI Filter[J].,2016,26(09):51.

更新日期/Last Update: 2017-10-20