[1]李春生,宋佳,张可佳,等. 基于关联度分析的生产异常模式挖掘[J].计算机技术与发展,2017,27(09):124-128.
 LI Chun-sheng,SONG Jia,ZHANG Ke-jia,et al. Abnormal Production Pattern Mining Based on Relevancy Analysis LI Chun-sheng,SONG Jia,ZHANG Ke-jia,ZHANG Yong[J].,2017,27(09):124-128.
点击复制

 基于关联度分析的生产异常模式挖掘()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年09期
页码:
124-128
栏目:
应用开发研究
出版日期:
2017-09-10

文章信息/Info

Title:
 Abnormal Production Pattern Mining Based on Relevancy Analysis LI Chun-sheng,SONG Jia,ZHANG Ke-jia,ZHANG Yong
文章编号:
1673-629X(2017)09-0124-05
作者:
 李春生宋佳张可佳张勇
 东北石油大学 计算机与信息技术学院
Author(s):
 LI Chun-shengSONG JiaZHANG Ke-jiaZHANG Yong
关键词:
 特征筛选时间序列函数拟合关联分析
Keywords:
 feature selectiontime sequencefunction fittingrelevancy analysis
分类号:
TP301
文献标志码:
A
摘要:
 为解决在智能化生产预警方法应用的过程中原始数据维度高、数据结构复杂、数据量大的问题,提出了基于关联度分析的生产异常模式挖掘方法.该方法建立了预警目标与影响特征之间的关联关系,通过计算关联度筛选出重要特征.在均值化方法处理数据的过程中,通过引入时间序列、选取时间粒度来截取距离数据,通过计算关联度、摒弃无效影响特征和降低数据维度来完成数据的准备过程.结合损耗性异常的业务数据特点,采用了基于时间序列的G-R分段拟合方法拟合数据,并利用均方根误差方法校验模型的准确性.实验验证选取了三次采油生产的异常情况为实例,采用G-R模型对特征集的元素进行分段拟合以求解相关参数.实例验证结果表明,该方法的预测数据与原始观测数据的吻合度高,且预测准确度较高.
Abstract:
 In order to solve the problem of high original data dimension,complex data structure and large data volume in the process of application of the intelligent production alarming method,a mining method of abnormal production pattern based on relevancy analysis is proposed. It establishes the incidence relation between early warning target and influential characteristics and screens out important features through relevancy calculations. In the process of data processing by equalization method the distance data is extracted by introduction of time series and selection of time granularity and preparation process of data is completed by calculation of relevancy,elimination of inva-lid influential features and reduction of data dimension. Combined with the data characteristic of abnormal loss,the G-R segmentation fit-ting method based on time series to fit the data and root mean square error method to verify the accuracy of the model. In the process of experimental verification,the abnormal situation of tertiary recovery production is taken as an example and the G-R model is adopted to carry on segmentation fitting towards the elements of the feature setting for solution of relevant parameters. The experimental results show that the proposed method agrees well with the original observation data,and its prediction accuracy is high.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(09):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(09):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(09):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(09):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(09):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(09):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(09):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(09):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(09):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(09):47.

更新日期/Last Update: 2017-10-20