[1]梅领,罗杰. 基于改进合作协同进化算法PID整定[J].计算机技术与发展,2017,27(08):37-42.
 MEI Ling,LUO Jie. PID Parameters Optimization with Improved Cooperative Coevolution Algorithm[J].,2017,27(08):37-42.
点击复制

 基于改进合作协同进化算法PID整定()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年08期
页码:
37-42
栏目:
智能、算法、系统工程
出版日期:
2017-08-10

文章信息/Info

Title:
 PID Parameters Optimization with Improved Cooperative Coevolution Algorithm
文章编号:
1673-629X(2017)08-0037-06
作者:
 梅领罗杰
 南京邮电大学 自动化学院
Author(s):
 MEI LingLUO Jie
关键词:
 PID参数整定协同进化排序策略优化目标函数
Keywords:
 PID parameter tuningco-evolutionsorting strategyoptimization objective function
分类号:
TP301.6
文献标志码:
A
摘要:
 针对复杂系统PID控制的参数整定问题,为在给定性能指标下实现PID三个参数以协同进化方式自动搜索的最佳组合,提出了一种基于改进合作协同进化的PID控制器参数优化方法.该方法根据PID控制器模型,设计了更具有针对性的PID参数优化目标函数,结合协同进化算法对参数进行最优组合,并在合作协同进化算法的基础上,提出了PID参数协同进化之前执行分组排序策略,依据处理结果选择确定最优组作为下一代协同进化的代表组合,根据代表组合评估分组排序优劣.仿真结果表明,所提出的新型合作协同进化算法应用于PID参数相比传统的进化算法具有更好的优化效果,且算法的收敛速度快、自适应性强、精确度高,显现出较好的应用前景.
Abstract:
 Aiming at the parameter tuning problem of PID control in complex system,a parameter optimization method of PID controller based on improved collaborative coevolution has been proposed to realize the optimal combination of three parameters of PID in the co-evolutionary way under the given performance index.Based on the PID controller model,a more optimized objective function of PID parameters has been designed.Combined with the cooperative co-evolutionary algorithm for optimization of the parameters,the group sorting strategy before PID parameters co-evolution is put forward based on the cooperative evolution algorithm.The optimal group is selected as the next generation of representative combination of co-evolution in accordance with results of group sorting strategy to evaluate the merits of packet sorting.The simulation results show that the proposed algorithm has better optimization effect than the traditional one,and has fast convergence speed,strong adaptability and high precision,with a better application prospects.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(08):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(08):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(08):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(08):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(08):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(08):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(08):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(08):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(08):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(08):47.

更新日期/Last Update: 2017-09-20