[1]标本,梁恺彬,管一弘. 高斯马尔可夫随机场的人脑MR图像分割方法[J].计算机技术与发展,2017,27(07):180-184.
 BIAO Ben,LIANG Kai-bin,GUAN Yi-hong. An Image Segmentation Method of Brain MR Based on Gaussian Markov Random Field[J].,2017,27(07):180-184.
点击复制

 高斯马尔可夫随机场的人脑MR图像分割方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年07期
页码:
180-184
栏目:
应用开发研究
出版日期:
2017-07-10

文章信息/Info

Title:
 An Image Segmentation Method of Brain MR Based on Gaussian Markov Random Field
文章编号:
1673-629X(2017)07-0180-05
作者:
 标本梁恺彬管一弘
 昆明理工大学 理学院
Author(s):
 BIAO BenLIANG Kai-binGUAN Yi-hong
关键词:
 人脑MRI 空间信息模糊C均值高斯马尔可夫随机场图像分割
Keywords:
 human brain MRIspatial informationfuzzy C meansGaussian Markov random fieldimage segmentation
分类号:
TP391
文献标志码:
A
摘要:
 传统的聚类分割方法通常是基于图像灰度值的相似程度进行像素划分,对强噪声或边缘模糊的人脑MRI进行分割的效果并不理想.为此,提出了高斯马尔可夫随机场的人脑MR图像分割方法.该方法将空间信息的模糊C均值与高斯马尔可夫随机场相结合,利用空间信息模糊C均值的良好抗噪性能对人脑MRI进行初始分割,降低噪声的影响.由于马尔可夫随机场拥有优良的空间相关性,所以基于马尔可夫随机场的分割方法能够很好地对人脑MRI纹理和边缘进行有效划分.但是它对噪声较为敏感,同时分割往往会因为噪声的影响导致噪点扩大或边缘外扩.鉴于人脑MRI的灰度分布拥有高斯特征,采用高斯函数建立的马尔可夫随机场模型能很好地反映人脑MRI的分布特点.为验证所提算法的有效性,以人脑MRI作为实验数据进行了大量实验,结果表明:所提出的分割方法对人脑MRI具有较好的分割结果,同时鲁棒性与抗噪性能大大增强.
Abstract:
 The traditional clustering segmentation method is usually used to divide pixels based on the degree of similarity of the image gray value,but its effect is not ideal for the strong noise or edge blur brain MRI.So an image segmentation method of brain MR based on Gaussian Markov random field is proposed.It combines fuzzy C mean with spatial information and Gaussian Markov random field and utilizes the well anti-noise performance of fuzzy C mean of spatial information for the initial segmentation,which can reduce the influence of noise.Due to the excellent spatial correlation of Markov random field,the method based on Markov random field can effectively divide the texture and edge of human brain MRI,but it is more sensitive to noises and results in the expansion of noise points or edges.Since the gray distribution of human brain MRI has the Gaussian characteristic,the Markov random field model created by Gaussian function can well reflect the distribution characteristics of brain MRIs.To verify the effectiveness of the proposed method,the numerous experiments have be conducted and their results have shown that the method has good segmentation effects for human brain MRI.At the same time,the robustness and the anti-noise ability are greatly enhanced.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(07):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(07):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(07):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(07):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(07):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(07):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(07):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(07):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(07):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(07):47.

更新日期/Last Update: 2017-08-24