[1]赵新苗,冯向萍,赵涛. 农业信息分类中K-means与SVM的混合算法研究[J].计算机技术与发展,2017,27(06):178-182.
 ZHAO Xin-miao,FENG Xiang-ping,ZHAO Tao. Investigation on K-means and SVM Mixed Algorithm for Agriculture Information Classification[J].,2017,27(06):178-182.
点击复制

 农业信息分类中K-means与SVM的混合算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年06期
页码:
178-182
栏目:
应用开发研究
出版日期:
2017-06-10

文章信息/Info

Title:
 Investigation on K-means and SVM Mixed Algorithm for Agriculture Information Classification
文章编号:
1673-629X(2017)06-0178-05
作者:
 赵新苗冯向萍赵涛
 新疆农业大学 计算机与信息工程学院
Author(s):
 ZHAO Xin-miaoFENG Xiang-pingZHAO Tao
关键词:
 农业信息分类聚类边缘样本删减
Keywords:
 agricultural informationclassificationclusteringedge samples reduction
分类号:
TP301.6
文献标志码:
A
摘要:
 随着新疆农业信息技术的不断发展和农村互联网的广泛普及,互联网中海量的农业相关知识和信息虽然为工作人员带来了便利,但是与此同时也给信息检索增加了难度.在对具有新疆特色的农作物网页信息分类研究的基础上,提出并实现了K-means与SVM相结合的分类方法,以帮助农业相关工作人员获得更准确有效的信息.该分类方法采用K-means对训练样本进行聚类以减少边缘训练样本,并应用SVM对删减后的训练集进行训练.为减少训练集边缘样本、节省训练时间,还提出了两种基于中心向量的边缘样本删减方法,分别仅保留中心向量方法和保留中心向量临近样本.实验验证结果表明,所提出的方法均能够同时有效地减少训练样本和训练时间.
Abstract:
 With the continuous development of Xinjiang agricultural information technology and the widespread popularity of rural Internet,the amount of relevant knowledge and information in Internet has been bringing lots of conveniences for people and difficulty for effective information retrieval at the same time.Based on the requirement analysis of Xinjiang Rural Information Acquisition System and aiming at categorization of the web pages which are about characteristic crops in Xinjiang to help display more accurate and effective agricultural information and reduce the number of training sets and save training time,a method combined with SVM and K-means has been proposed.Its main process contains clustering the training sets with K-means to delete edge samples and training the SVM on the new deleted training sets.Two methods of deleting edge samples and retaining neighbors of the centers have also been proposed.Experimental results show that these methods can decrease training samples and training time.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(06):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(06):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(06):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(06):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(06):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(06):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(06):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(06):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(06):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(06):47.
[11]陈燕红[],刘风华[]. 一种改进的潜在语义检索模型研究[J].计算机技术与发展,2014,24(09):120.
  Study on Improved Latent Semantic Retrieval Model[J].,2014,24(06):120.
[12]赵新苗,冯向萍,李永可. 改进的中心向量算法在农业信息分类中的研究[J].计算机技术与发展,2016,26(08):146.
 ZHAO Xin-miao,FENG Xiang-ping,LI Yong-ke. Research on Improved Center Vector Algorithm in Agricultural Information Classification[J].,2016,26(06):146.

更新日期/Last Update: 2017-07-28