[1]陈志阳,黄丽亚,文念,等. 基于线性约束最小方差的脑磁源定位特性研究[J].计算机技术与发展,2017,27(04):170-175.
 CHEN Zhi-yang,HUANG Li-ya,WEN Nian,et al. Investigation on MEG Source Localization with Linear ConstrainedMinimum Variance[J].,2017,27(04):170-175.
点击复制

 基于线性约束最小方差的脑磁源定位特性研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年04期
页码:
170-175
栏目:
应用开发研究
出版日期:
2017-04-10

文章信息/Info

Title:
 Investigation on MEG Source Localization with Linear ConstrainedMinimum Variance
文章编号:
1673-629X(2017)04-0170-06
作者:
 陈志阳黄丽亚文念笪铖璐吴劲松
 南京邮电大学 电子科学与工程学院
Author(s):
 CHEN Zhi-yangHUANG Li-yaWEN NianDA Cheng-luWU Jin-song
关键词:
 脑磁信号源定位头模型线性约束最小方差噪声
Keywords:
 MEGsource localizationhead modelLCMVnoise
分类号:
TP391;TM152
文献标志码:
A
摘要:
 波束形成是一种广泛运用于脑磁信号的偶极子溯源方法,其定位结果的准确度是目前研究的一个关键点.基于电流偶极子模型,以相关系数和定位误差作为评价标准,研究了不同头模型、不同伪迹噪声对线性约束最小方差定位算法的影响.通过计算机软件,在脑内已知位置设定已知源信号,采用不同头模型进行前向问题计算并叠加不同噪声,对模拟的真实脑磁信号进行逆问题的求解,进行源定位与源信号重构.仿真结果表明,在叠加相同噪声的情况下,采用不同头模型在较低信噪比下对算法的影响有一定差异,而在信噪比高于-10分贝的条件下,则对算法几乎没有影响,能达到较好的定位效果.在采用相同头模型的情况下,叠加不同类型的噪声伪迹所产生的影响各不相同,其中高斯白噪声产生的影响最大,有色噪声次之,基线漂移产生的影响最小.
Abstract:
 Beamforming is widely used in the dipole sourcing for magnetoencephalography (MEG) signals,and the accuracy of localization result is the key of the current research.Based on the current dipole source model,the influence of different head models and artifacts on the Linear Constrained Minimum Variance (LCMV) sourcing has been discussed,taking the correlation and the localization bias as the valuation criteria.The source signal has been simulated using computer software and the forward problem has been solved based on different head model,then the inverse problem is calculated to localize the sources and reconstruct the signals under different noise environments.The simulation suggests that under the same noise environment,the localization result has been affected by the head model while the signal to noise ratio is low,however the accuracy of localization result is more reliable and not related to the head model when the SNR is higher than-10dB.In the case of the same head model,the types of artifacts lead to different results,where Gaussian white noise has the greatest influence,colored noise is second,and baseline wander artifact has the least influence.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(04):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(04):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(04):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(04):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(04):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(04):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(04):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(04):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(04):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(04):47.
[11]张学军[][],等. 基于小波包基与能量熵的MEG自动分类方法[J].计算机技术与发展,2016,26(06):127.
 ZHANG Xue-jun[] [],DING Yu-han[] HUANG Li-ya[][],CHENG Xie-feng[][]. Automatic Classification Method of MEG Based on Wavelet Packet and Energy Entropy[J].,2016,26(04):127.
[12]张学军[][],朱丽敏[],黄丽亚[][],等. 基于EEMD和GA-SVM的精神分裂症MEG识别[J].计算机技术与发展,2016,26(08):166.
 ZHANG Xue-jun[][],ZHU Li-min[],HUANG Li-ya[][] CHENG Xie-feng[][]. Recognition of Schizophrenic MEG Based on EEMD and GA-SVM[J].,2016,26(04):166.

更新日期/Last Update: 2017-06-19