[1]钱阳,李雷. 基于新型鲁棒字典学习的视频帧稀疏表示[J].计算机技术与发展,2017,27(02):37-41.
 QIAN Yang,LI Lei. Sparse Representation of Video Frame Based on Novel Robust Dictionary Learning[J].,2017,27(02):37-41.
点击复制

 基于新型鲁棒字典学习的视频帧稀疏表示()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年02期
页码:
37-41
栏目:
智能、算法、系统工程
出版日期:
2017-02-10

文章信息/Info

Title:
 Sparse Representation of Video Frame Based on Novel Robust Dictionary Learning
文章编号:
1673-629X(2017)02-0037-05
作者:
 钱阳李雷
 南京邮电大学视觉认知计算与应用研究中心
Author(s):
 QIAN YangLI Lei
关键词:
 字典学习稀疏表示异常数据鲁棒性
Keywords:
 dictionary learningsparse representationoutlier datarobustness
分类号:
TP301
文献标志码:
A
摘要:
 字典学习方法是一种非常有效的信号稀疏表示方法,在稀疏信号处理领域应用极其广泛.然而,实际应用中,训练样本和测试样本可能会受到损坏并且含有噪声和异常值,这将严重影响字典学习方法的性能.为此,不同于传统的字典学习方法从干净数据中学习字典,提出一种新型鲁棒字典学习算法,旨在处理训练样本中的异常值.该算法通过采用交替近端线性化方法求解非凸的最小l0范数,在学习鲁棒字典的同时隔离训练样本中的异常值.大量仿真对比实验表明,所提算法具有更好的鲁棒性,并能提供很好的性能改进.
Abstract:
 Dictionary learning is a very effective signal sparse representation method which has been widely used in the field of sparse signal processing.However,in practice,both training and testing samples may be corrupted and contain noises and a few outlier data,which may heavily affect the learning performance of it.Hence,in contrast to the conventional dictionary learning methods that learn the dictionary from clean data,a novel robust dictionary learning algorithm is proposed to handle the outliers in training data.In the proposed algorithm,the alternating proximal linearized method is used for solving the non-convex l0 norm based dictionary learning problem.Thus,the robust dictionary can be learned and outliers can be isolated in the training samples simultaneously.The simulation experimental results demonstrate that the method has the promising robusness and can provide significant performance improvement.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(02):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(02):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(02):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(02):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(02):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(02):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(02):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(02):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(02):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(02):47.
[11]余琨,荆晓远,吴飞,等. 基于竞争聚集的K-SVD字典学习算法[J].计算机技术与发展,2015,25(11):44.
 YU Kun,JING Xiao-yuan,WU Fei,et al. K-SVD Dictionary Learning Algorithm Based on Competitive Agglomeration[J].,2015,25(02):44.
[12]周飞飞,李雷. 广义贝叶斯字典学习K-SVD稀疏表示算法[J].计算机技术与发展,2016,26(05):71.
 ZHOU Fei-fei,LI Lei. K-SVD Sparse Representation Algorithm of Generalized Bayesian Dictionary Learning[J].,2016,26(02):71.
[13]李欣,崔子冠,陈杰,等. 基于局部回归和自相似性的图像超分辨率重建[J].计算机技术与发展,2016,26(10):17.
 LI Xin,CUI Zi-guan,CHEN Jie,et al. Image Super-resolution Reconstruction Based on Local Regression and Self-similarity[J].,2016,26(02):17.
[14]钱阳,李雷,袁安安. 基于自适应K-SVD字典的视频帧稀疏重建算法[J].计算机技术与发展,2017,27(06):36.
 QIAN Yang,LI Lei,YUAN An-an. An Adaptive K-SVD Dictionary Learning Algorithm for Video Frame Sparse Reconstruction[J].,2017,27(02):36.
[15]陈春林,张礼,刘学军. 针对SAR图像的树形稀疏表示结构识别算法研究[J].计算机技术与发展,2017,27(08):20.
 CHEN Chun-lin,ZHANG Li,LIU Xue-jun. Investigation on Identification Algorithm of Tree-structure Sparse Representation for SAR Target[J].,2017,27(02):20.
[16]吕颢[],刘峰[],干宗良[],等. 基于字典学习的模糊车牌中文字符识别[J].计算机技术与发展,2017,27(11):75.
 LYU Hao[],LIU Feng[],GAN Zong-liang[],et al. Chinese Character Recognition in Fuzzy Vehicle Plate Based on Dictionary Learning[J].,2017,27(02):75.

更新日期/Last Update: 2017-05-11