[1]成云,成孝刚,谈苗苗,等. 基于ARIMA和小波神经网络组合模型的交通流预测[J].计算机技术与发展,2017,27(01):169-172.
 CHENG Yun,CHENG Xiao-gang,TAN Miao-miao,et al. Traffic Flow Prediction Based on Hybrid Model of ARIMA and WNN[J].,2017,27(01):169-172.
点击复制

 基于ARIMA和小波神经网络组合模型的交通流预测()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年01期
页码:
169-172
栏目:
应用开发研究
出版日期:
2017-01-10

文章信息/Info

Title:
 Traffic Flow Prediction Based on Hybrid Model of ARIMA and WNN
文章编号:
1673-629X(2017)01-0169-04
作者:
 成云成孝刚谈苗苗周凯李海波
 南京邮电大学 通信与信息工程学院
Author(s):
 CHENG Yun;CHENG Xiao-gang;TAN Miao-miao;ZHOU Kai;LI Hai-bo
关键词:
 交通流预测差分自回归滑动平均模型小波神经网络组合模型
Keywords:
 traffic flow predictionARIMA modelwavelet neural networkhybrid model
分类号:
U491112
文献标志码:
A
摘要:
 针对现阶段城市道路交通流预测精度不高的局限性,提出了一种基于差分自回归滑动平均( ARIMA)和小波神经网络( WNN)组合模型的预测方法来进行交通流预测。利用差分自回归滑动平均模型良好的线性拟合能力和小波神经网络模型强大的非线性关系映射能力,把交通流时间序列的数据结构分解为线性自相关结构和非线性结构两部分。采用差分自回归滑动平均模型预测交通流序列的线性部分,用小波神经网络模型预测其非线性残差部分,最终合成为整个交通流序列的预测结果。计算机仿真结果表明:组合模型的预测精度高于ARIMA模型和WNN模型各自单独使用时的预测精度,组合模型可以提高交通流预测精度,是交通流预测的有效方法。
Abstract:
 Aimed at the limitation of low prediction accuracy at the present stage of city road traffic,a prediction method is proposed based on Hybrid Autoregressive Integrated Moving Average ( ARIMA) and Wavelet Neural Network ( WNN) to predict traffic flow. Using the good linear fitting ability of ARIMA and the strong nonlinear mapping ability of WNN,the traffic flow time series are considered to be composed of a linear autocorrelation structure and a nonlinear structure. ARIMA model is used to predict the linear component of traffic flow time series and the wavelet neural network model is applied to the nonlinear residual component prediction. The simulation results show that the hybrid model can produce more accurate prediction than that of single model,which improves prediction accuracy of traffic flow prediction,and it’ s an efficient method.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(01):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(01):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(01):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(01):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(01):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(01):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(01):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(01):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(01):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(01):47.
[11]廖荣华,兰时勇,刘正熙. 基于混沌时间序列局域法的短时交通流预测[J].计算机技术与发展,2015,25(01):1.
 LIAO Rong-hua,LAN Shi-yong,LIU Zheng-xi. Short-term Traffic Flow Forecasting Based on Local Prediction Method in Chaotic Time Series[J].,2015,25(01):1.
[12]杨济瑞,赵海涛,刘南杰. 改进的三次指数平滑法及其在车联网中的应用[J].计算机技术与发展,2016,26(11):164.
 YANG Ji-rui,ZHAO Hai-tao,LIU Nan-jie. Modified Cubic Exponential Smoothing Algorithm and Its Application on IoV[J].,2016,26(01):164.

更新日期/Last Update: 2017-04-05