[1]张波,韩俊刚. 基于SDSoC的SIFT特征点检测[J].计算机技术与发展,2016,26(12):103-106.
 ZHANG Bo,HAN Jun-gang. Scale Invariant Feature Transform Algorithm Based on SDSoC[J].,2016,26(12):103-106.
点击复制

 基于SDSoC的SIFT特征点检测()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年12期
页码:
103-106
栏目:
智能、算法、系统工程
出版日期:
2016-12-10

文章信息/Info

Title:
 Scale Invariant Feature Transform Algorithm Based on SDSoC
文章编号:
1673-629X(2016)12-0103-04
作者:
 张波韩俊刚
 西安邮电大学 计算机学院
Author(s):
 ZHANG BoHAN Jun-gang
关键词:
 SIFTSDSoC软硬件协同FPGA
Keywords:
 SIFTSDSoCco-design of software and hardwareFPGA
分类号:
TP391
文献标志码:
A
摘要:
 为了在嵌入式机器视觉处理系统中能够快速提取图像的特征点,完成图像匹配与物体识别等操作,提出了一种在全可编程器件上实现的SIFT( Scale Invariant Feature Transform)算法。该算法使用SDSoC开发环境,采用PS( Processing Sys-tem)和PL( Programmable Logic)协同开发策略,通过流水线优化、软硬件并行和重构算法顺序等方法对算法进行优化。对多幅QVGA分辨率图像进行了处理,结果表明软硬件协同开发的策略能够有效提高算法性能,同时能保留较多特征点。该算法生成的特征点在尺度变换、旋转和缩放的情况下均能得到良好的匹配效果。与现有使用软件实现的SIFT方案相比,具有一定的实时性,满足了在嵌入式领域的应用需求。
Abstract:
 In order to extract image feature points in embedded machine vision system quickly and complete operations such as image matching and object recognition,a SIFT ( Scale Invariant Feature Transform) algorithm is put forward on an all programmable device. It uses SDSoC environment and PS ( Processing System) and PL ( Programmable Logic) co-design strategy,and is optimized through the pipeline optimization,parallel hardware and software and reconstruction of algorithm sequence. Images of QVGA resolution are pro-cessed,and the results show that the methodology of hardware and software co-design can effectively improve performance of SIFT algo-rithm,while retaining many feature points. This algorithm generates the feature points to match well under the condition of the scale trans-form,rotation and scaling. Compared with the existing implementation of SIFT by software,the performance of real-time meets the appli-cation requirements in the embedded field.

相似文献/References:

[1]肖若秀 蔡光程 贾建波.利用旋转模板匹配方法对SIFT算法的改进[J].计算机技术与发展,2009,(05):127.
 XIAO Ruo-xiu,CAI Guang-cheng,JIA Jian-bo.Using a Rotated Template to Improve SIFT's Processing[J].,2009,(12):127.
[2]张斌 王嘉祯 文家福 常雷[].基于SIFT的抗几何攻击水印研究与实现[J].计算机技术与发展,2011,(03):174.
 ZHANG Bin WANG Jia-zhen,WEN Jia-fu,CHANG Lei.Watermark Research and Implementation Against Geometric Distortion Based on SIFT[J].,2011,(12):174.
[3]谭志园 孙继银 王忠 张财兴.景象匹配算法研究进展与展望[J].计算机技术与发展,2012,(09):66.
 TAN Zhi-yuan,SUN Ji-yin,WANG Zhong,et al.Status and Prospect of Algorithm for Scene Matching Systems[J].,2012,(12):66.
[4]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(12):1.
[5]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(12):5.
[6]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(12):13.
[7]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(12):21.
[8]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(12):25.
[9]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(12):29.
[10]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(12):34.
[11]汪慧兰,毛晓辉,杨晶晶,等. 融合小波变换和SIFT特征的商标检索方法[J].计算机技术与发展,2015,25(04):89.
 WANG Hui-lan,MAO Xiao-hui,YANG Jing-jing,et al. Trademark Retrieval Method Combining Wavelet Transform and SIFT Features[J].,2015,25(12):89.
[12]李炀,翟社平. 改进的SIFT图像匹配算法[J].计算机技术与发展,2016,26(11):58.
 LI Yang,ZHAI She-ping. Improved SIFT Image Matching Algorithm[J].,2016,26(12):58.
[13]贾琪,王晓丹,周来恩,等. 一种改进的特征点方向分配算法[J].计算机技术与发展,2017,27(10):6.
 JIA Qi,WANG Xiao-dan,ZHOU Lai-en,et al. An Improved Algorithm for Assigning Orientations to Feature Points[J].,2017,27(12):6.

更新日期/Last Update: 2017-02-03