[1]杨济瑞,赵海涛,刘南杰. 改进的三次指数平滑法及其在车联网中的应用[J].计算机技术与发展,2016,26(11):164-169.
 YANG Ji-rui,ZHAO Hai-tao,LIU Nan-jie. Modified Cubic Exponential Smoothing Algorithm and Its Application on IoV[J].,2016,26(11):164-169.
点击复制

 改进的三次指数平滑法及其在车联网中的应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年11期
页码:
164-169
栏目:
应用开发研究
出版日期:
2016-11-10

文章信息/Info

Title:
 Modified Cubic Exponential Smoothing Algorithm and Its Application on IoV
文章编号:
1673-629X(2016)11-0164-04
作者:
 杨济瑞赵海涛刘南杰
 南京邮电大学 通信与信息工程学院;南京邮电大学 网络基因工程研究所
Author(s):
 YANG Ji-ruiZHAO Hai-taoLIU Nan-jie
关键词:
 车联网指数平滑法最优平滑系数交通流预测
Keywords:
 IoVexponential smoothing methodoptimal smoothing coefficienttraffic flow forecasting
分类号:
TP301
文献标志码:
A
摘要:
 指数平滑法是车联网中交通流预测较为常见的方法之一,其准确性主要取决于平滑系数。由于传统指数平滑法系数是静态的原因,其已经不能满足交通流预测的精度要求。为了进一步提高预测精度,对传统指数平滑法进行了分析,其平滑系数相对静态,不能实时进行修正,导致其不能很好地反映数据变化的实时趋势。通过利用三次指数平滑法对交通流预测模型进行优化,利用等距法寻找每次预测时的最优平滑系数对数据趋势进行估计,保证了每次预测时的平滑系数最优,提高了预测精度。基于交通流预测的不同应用环境,利用南京某路段实际的交通流数据进行仿真,得到的仿真结果表明,提出的优化算法在预测交通流数据变化趋势方面有较高的精度。
Abstract:
 The method of exponential smoothing is one of more common methods for forecasting the traffic flow in IoV ( Internet of Vehi-cle) ,the accuracy of which depends on the smoothing coefficient. This method has been unable to meet the need of accuracy while fore-casting traffic flow because of the static smoothing coefficient. By analyzing the features of the traditional exponential smoothing method, it is pointed out that the changing trend of data can’ t be reflected appropriately using this method due to the static smoothing coefficient. Then the cubic exponential smoothing method is proposed aiming at further improving the forecasting accuracy. The changing trend of da-ta can be forecasted through searching for the optimal smoothing coefficient using the equal interval method after optimizing the model of forecasting traffic flow by the cubic exponential smoothing method. Finally,the actual data of traffic flow on one segment in Nanjing is simulated based on different application environments where the traffic flow is forecasted. The simulation results show that the accuracy of the proposed optimization algorithm is better in terms of forecasting the changing trend of data in traffic flow.

相似文献/References:

[1]王建强 李世威 曾俊伟.车联网发展模式探析[J].计算机技术与发展,2011,(12):235.
 WANG Jian-qiang,LI Shi-wei,ZENG Jun-wei.Analysis of Development Model of Internet of Vehicles[J].,2011,(11):235.
[2]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(11):1.
[3]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(11):5.
[4]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(11):13.
[5]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(11):21.
[6]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(11):25.
[7]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(11):29.
[8]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(11):34.
[9]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(11):38.
[10]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(11):43.
[11]于明鹭,刘南杰,赵海涛,等. 基于车联网的智能打车系统[J].计算机技术与发展,2016,26(02):118.
 YU Ming-lu,LIU Nan-jie,ZHAO Hai-tao,et al. Intelligent Taxi Service System Based on Internet of Vehicle[J].,2016,26(11):118.
[12]庞立君,廖春伟,黄波,等. 基于GID的车联网数据安全方案[J].计算机技术与发展,2016,26(04):101.
 PANG Li-jun,LIAO Chun-wei,HUANG Bo,et al. Data Security Scheme of IOV Based on GID[J].,2016,26(11):101.
[13]韩家群,刘南杰,黄波,等. 基于车联网大数据的UBI系统研究[J].计算机技术与发展,2016,26(12):26.
 HAN Jia-qun,LIU Nan-jie,HUANG Bo,et al. Research on UBI System Based on Big Data in IOV[J].,2016,26(11):26.

更新日期/Last Update: 2016-12-16