[1]徐富新,杨晓津,刘雁群. 基于ARM的液体表面张力系数测量系统设计[J].计算机技术与发展,2016,26(11):144-147.
 XU Fu-xin,YANG Xiao-jin,LIU Yan-qun. Measurement System of Liquid Surface Tension Coefficient Based on ARM[J].,2016,26(11):144-147.
点击复制

 基于ARM的液体表面张力系数测量系统设计()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年11期
页码:
144-147
栏目:
应用开发研究
出版日期:
2016-11-10

文章信息/Info

Title:
 Measurement System of Liquid Surface Tension Coefficient Based on ARM
文章编号:
1673-629X(2016)11-0144-04
作者:
 徐富新杨晓津刘雁群
 中南大学 物理与电子学院
Author(s):
 XU Fu-xinYANG Xiao-jinLIU Yan-qun
关键词:
 表面张力系数STM32力敏传感器拉脱法HX711
Keywords:
 surface tension coefficientSTM32force sensorpull-off methodHX711
分类号:
TP391.8
文献标志码:
A
摘要:
 为了解决传统的液体表面张力系数测量中存在的精度低、稳定性差的问题,设计了一种基于ARM处理器的液体表面张力系数测量仪。采用功能强、频率高的STM32芯片作为主控制器,并对用拉脱法测液体表面张力系数的测量装置进行了改进;系统采用集成了放大器和24位A/D转换器的芯片HX711对力敏传感器输出的模拟信号进行放大并数字化,采用中位值平均算法对ADC输出的数据进行滤波;对传感器进行静态标定,获得其线性特性关系,并分析系统的测量误差;最后通过LCD显示屏直接显示测量拉力的大小,提高了测量效率。实验结果表明,相较于传统测量仪器,该液体表面张力系数测量仪有效提高了测量精度,误差较小,且重复性好。
Abstract:
 In order to solve the problems such as low precision and poor stability in the experimental instrument of traditional liquid sur-face tension coefficient,a liquid surface tension coefficient instrument based on ARM microprocessor is designed. The STM32 which has powerful functions and high frequency is used as the controller to improve the experimental device for measuring the liquid surface tension coefficient with pull-off method. This system uses HX711 to amplify the electric signal output from the force sensor,and converts the an-alog signal to digital signal. The median average filtering algorithm is used to filter. The static characteristic of the sensor is calibrated,get-ting the linear relationship between features,and the error of the measuring system is analyzed. The LCD screen is used to display the size of the tension directly which improves the efficiency of the measurement. The experimental results indicate that compared with the tradi-tional instrument,this liquid surface tension coefficient instrument improves the measurement accuracy effectively,decreases the errors and has good repeatability.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(11):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(11):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(11):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(11):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(11):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(11):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(11):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(11):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(11):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(11):47.

更新日期/Last Update: 2016-12-16