[1]邵虹,耿昊. 基于肤色信息和模板匹配的人脸检测与提取[J].计算机技术与发展,2016,26(11):49-53.
 SHAO Hong,GENG Hao. Face Detection and Extraction Based on Skin-color Information and Template Matching[J].,2016,26(11):49-53.
点击复制

 基于肤色信息和模板匹配的人脸检测与提取()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年11期
页码:
49-53
栏目:
智能、算法、系统工程
出版日期:
2016-11-10

文章信息/Info

Title:
 Face Detection and Extraction Based on Skin-color Information and Template Matching
文章编号:
1673-629X(2016)11-0049-05
作者:
 邵虹耿昊
 沈阳工业大学 信息科学与工程学院
Author(s):
 SHAO HongGENG Hao
关键词:
 色彩空间肤色高斯模型肤色信息模板匹配人脸检测
Keywords:
 color spaceskin-color Gaussian modelskin-color informationtemplate matchingface detection
分类号:
TP391
文献标志码:
A
摘要:
 随着人机交互的日益发展,人脸识别中的重要环节人脸检测得到了越来越多的重视。人脸检测的关键在于准确率和效率。针对肤色信息进行人脸检测速度快、易于实现,但准确率不高的特点,将肤色信息与模板匹配的方法结合起来进行人脸检测。利用在YCbCr色彩空间中的肤色高斯模型,进行肤色区域的分割,经过膨胀腐蚀、长宽比与欧拉数等规则的处理,完成人脸区域的粗检测。然后通过模板匹配的方法进行人脸的细检测,将检测出的人脸区域圈起来并进行提取,形成一系列的人脸图像。实验结果表明,两种方法结合后检测准确率有所提高,速度较快。
Abstract:
 With the development of human-computer interaction,face detection,an important part of face recognition,has got more and more attention. The key of face detection is accuracy and efficiency. The speed of face detection by skin-color information is fast and it is easy to be implemented,but the accuracy is not high. A method combined skin-color information and template matching is put forward for face detection. First of all,the skin-color Gaussian model in YCbCr color space to segment the area of skin is used. After the process-ing of expansion corrosion,aspect rating,Euler number and other rules,the rough face detection is completed. Then fine face detection by template matching is accomplished. Face region is circled and extracted to form series of face image. Experiments show that the accuracy of the combined method is higher and the speed is faster.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(11):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(11):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(11):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(11):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(11):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(11):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(11):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(11):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(11):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(11):47.
[11]赵金金,姚汉利,鲍文霞. 基于部件模型及颜色信息的行人检测[J].计算机技术与发展,2017,27(11):58.
 ZHAO Jin-jin,YAO Han-li,BAO Wen-xia. Pedestrian Detection Based on Part Model and Color Information[J].,2017,27(11):58.

更新日期/Last Update: 2016-12-09