[1]江爱珍,曾桂根. Massive MIMO上行系统能效资源分配算法[J].计算机技术与发展,2016,26(10):200-204.
 JIANG Ai-zhen,ZENG Gui-gen. Energy-efficient Resource Allocation for Massive MIMO Uplink Systems[J].,2016,26(10):200-204.
点击复制

 Massive MIMO上行系统能效资源分配算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年10期
页码:
200-204
栏目:
应用开发研究
出版日期:
2016-10-10

文章信息/Info

Title:
 Energy-efficient Resource Allocation for Massive MIMO Uplink Systems
文章编号:
1673-629X(2016)10-0200-05
作者:
 江爱珍曾桂根
 南京邮电大学
Author(s):
 JIANG Ai-zhenZENG Gui-gen
关键词:
 Massive MIMO 能效资源分配上行系统分数规划CRAHNs
Keywords:
 Massive MIMOenergy efficiencyresource allocationuplink systemsfractional programmingCRAHNs
分类号:
TP301.6
文献标志码:
A
摘要:
 研究了在认知无线电Ad Hoc网络( CRAHNs)中基于大规模多输入多输出( Massive MIMO)上行系统的能效资源分配算法。簇头采用迫零( ZF)接收,且考虑在电路功率消耗、各节点的最小数据速率以及最大发射功率的情况下,建立基于能效下界的非凸优化模型。根据分数规划的性质,将能效最优化问题中分数形式转化为减式形式,从而利用凸优化求解最优接收天线数和各节点发射功率来获得最大能效。仿真结果表明,所提算法在能效上近似最优值,能够满足各节点最小数据速率及最大功率的约束条件,且能以较小的迭代次数收敛到最优能效性能。
Abstract:
 An energy-efficient resource allocation algorithm for Massive MIMO uplink system in Cognitive Radio Ad Hoc Networks ( CRAHNs) is studied. In the case of a Zero-Forcing ( ZF) receiver in cluster,the considered problem is modeled as a non-convex opti-mization based on energy-efficient lower bound. Furthermore,the optimization takes into account the circuit power consumption,mini-mum required data rate and maximum required power of each node. According to the properties of fractional programming,the resulting energy-efficient optimization in the fractional form is transformed into subtractive form. Convex optimization is exploited to obtain the numbers of antennas and optimal transmit power of each node which lead to maximum energy efficiency. Simulation shows that the pro-posed algorithm approximates the optimal value of the energy efficiency,satisfies the minimum data rate and the maximum power con-straint,and converges to energy-efficient optimization in a small number of iterations.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(10):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(10):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(10):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(10):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(10):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(10):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(10):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(10):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(10):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(10):47.

更新日期/Last Update: 2016-11-29