[1]刘缨[][],尹珩[],戴文娟[]. 基于台标识别的网络视频分类系统[J].计算机技术与发展,2016,26(10):87-91.
 LIU Ying[][],YIN Hang[],DAI Wen-juan[]. A Classification System for Internet Videos Based on TV Logo Recognition[J].,2016,26(10):87-91.
点击复制

 基于台标识别的网络视频分类系统()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年10期
页码:
87-91
栏目:
应用开发研究
出版日期:
2016-10-10

文章信息/Info

Title:
 A Classification System for Internet Videos Based on TV Logo Recognition
文章编号:
1673-629X(2016)10-0087-05
作者:
 刘缨[1][2]尹珩[1] 戴文娟[3]
1.北京市网信办;2.北京理工大学 管理与经济学院;3.讯飞智元信息科技有限公司
Author(s):
 LIU Ying[1][2]YIN Hang[1] DAI Wen-juan[3]
关键词:
 公共安全网络视频台标识别模板匹配ORB特征识别
Keywords:
 public safety internet  videosTV  logo recognitiontemplate matchingORB
分类号:
TP302
文献标志码:
A
摘要:
 为了快速准确地清理互联网平台上的非法视频,减少人力物力的投入,在研究非法视频特征的基础上,提出一套基于台标识别的网络视频分类系统。在分析不同来源非法视频台标特性的基础上,根据不同来源的非法视频所携带的台标特性不同,系统采用基于模板匹配和特征识别相结合的方法进行台标识别,以提升识别的准确率。同时采用多种图像增强技术降低分辨率、清晰度、背景等不确定因素对识别结果的影响,提升对非法视频的召回率以及召回的准确率。实验结果表明,该系统可通过筛选出确认安全视频和疑似非法视频来有效减少非法视频筛选中的人力投入。另外,采用FFM-PEG解码库解码视频抽取关键帧,提高了系统处理效率,平均单个视频处理时间缩短30%。
Abstract:
 In order to clean up the illegal videos on the internet rapidly and accurately and reduce the input of manpower and material re-sources,a video classification system based on TV logo recognition has been proposed. On the basis of analyzing illegal videos TV logo with different producer,the system adopts a method combined pattern matching and feature recognition for TV logo recognition to im-prove accuracy according to different TV logo feature of illegal video. At the same time,a variety of image enhancement techniques are a-dopted to decrease the influence of uncertain factors like resolution,definition and background on the identification results,improving the recall rate of illegal video and recall accuracy. Experimental results show that this system could effectively reduce the human input and material resource by screening out the security video and suspected illegal video. In addition,FFMPEG is used to decode and draw key frame,which can improve the efficiency at 30%.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(10):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(10):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(10):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(10):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(10):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(10):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(10):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(10):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(10):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(10):47.

更新日期/Last Update: 2016-11-25