[1]李贤喆,江兵,王强,等. 模糊PID控制在轮式机器人直立系统中的应用[J].计算机技术与发展,2016,26(09):171-174.
 LI Xian-zhe,JIANG Bing,WANG Qiang,et al. Application of Fuzzy PID Control in Upright Wheeled Robot System[J].,2016,26(09):171-174.
点击复制

 模糊PID控制在轮式机器人直立系统中的应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年09期
页码:
171-174
栏目:
智能、算法、系统工程
出版日期:
2016-09-10

文章信息/Info

Title:
 Application of Fuzzy PID Control in Upright Wheeled Robot System
文章编号:
1673-629X(2016)09-0171-04
作者:
 李贤喆江兵王强李轩恺
 南京邮电大学 自动化学院
Author(s):
 LI Xian-zheJIANG BingWANG QiangLI Xuan-kai
关键词:
 模糊控制轮式机器人直立控制 Simulink仿真PID
Keywords:
 fuzzy controlwheeled robotvertical control Simulink simulationPID
分类号:
TP39
文献标志码:
A
摘要:
 轮式直立机器人具有结构简单、可控性强、行进速度快、控制灵活、低成本等特点,广泛运用于需要按预定路径进行移动的机器人中。依据对轮式机器人建模得出直立状态下车轮加速度的控制算法,设计模糊PID自整定控制器的隶属度关系及模糊规则表,用Simulink仿真比较,表明模糊后的PID自整定算法明显优于常规的PID算法。将两种算法实际运用于机器人直立控制过程,测量直立状态下的z轴角加速度放大1000倍后的输出曲线,计算出经过模糊化后的方差缩小了73.4%,极差缩小了67.5%,综合性能提高了3倍。结果表明,模糊自整定后的直立控制效果明显优于常规PID。
Abstract:
 Erect wheeled robot which has simple structure,strong controllability,low cost,fast speed,flexible control and other characteris-tics,is widely used in mobile robot needing a predetermined path. According to wheeled robot modeling,the control algorithm of robot’ s wheel acceleration in upright condition is obtained,and the membership relations of the fuzzy self-tuning PID controller and fuzzy rule table is designed. Comparison with Simulink simulation indicates that the fuzzy PID self-tuning algorithm is superior to the conventional PID algorithm. The two algorithms are used in the process of the robot vertical control,measuring the output curve of z axis under condi-tion of vertical angular acceleration magnified 1 000 times,calculated that the variance shrinks by 73. 4%,range shrinks by 67. 5%,and comprehensive performance improves three times after a blurring. It verifies that upright control effect is better than conventional PID after the fuzzy self-tuning.

相似文献/References:

[1]蓝天 张学军 郑丽英.基于面向对象的汽车防撞控制系统的设计[J].计算机技术与发展,2010,(06):237.
 LAN Tian,ZHANG Xue-jun,ZHENG Li-ying.Design of Vehicle Crash-Avoiding Controlling System Based on Oriented-Object[J].,2010,(09):237.
[2]张海英 余臻 陈燕萍.模糊控制在智能交通灯监控系统中的应用[J].计算机技术与发展,2008,(03):181.
 ZHANG Hai-ying,YU Zhen,CHEN Yan-ping.Application of Fuzzy Control in Intelligent Traffic Lights Monitoring System[J].,2008,(09):181.
[3]黎惠成 曾碧 吴清泉 李愿.一种基于模糊控制的温度控制系统设计[J].计算机技术与发展,2009,(12):236.
 LI Hui-cheng,ZENG Bi,WU Qing-quan,et al.Design of a Temperature Control System Based on Fuzzy Control[J].,2009,(09):236.
[4]方良松 余春艳.基于数字荷尔蒙模型的信号灯配时优化的研究[J].计算机技术与发展,2009,(01):143.
 FANG Liang-song,YU Chun-yan.Digital Hormones Model- Based Optimal Time Assignment of Traffic Signal Cycle[J].,2009,(09):143.
[5]曹晓燕 于立萍[] 姚文韬[].基于粒子群算法的模糊控制在倒立摆中的应用[J].计算机技术与发展,2008,(06):151.
 CAO Xiao-yan,YU Li-ping,YAO Wen-tao.Particle Swarm Optimization in Fuzzy Control of an Inverted Pendulum[J].,2008,(09):151.
[6]李红岩 侯媛彬 王秀.实现温度自动调节的模糊控制器设计[J].计算机技术与发展,2006,(03):149.
 LI Hong-yan,HOU Yuan-bin,WANG Xiu.Design of Fuzzy Controller with Temperature Automatic Regulation[J].,2006,(09):149.
[7]夏明波 王晓川 金士尧 李祖秀 胡光强[].ASAS集群的模糊控制策略[J].计算机技术与发展,2006,(12):39.
 XIA Ming-bo,WANG Xiao-chuan,JIN Shi-yao,et al.Fuzzy Control Strategy in ASAS Cluster[J].,2006,(09):39.
[8]黄春平 蒋珉 柴干.高速公路的匝道与可变限速联合模糊控制[J].计算机技术与发展,2010,(12):38.
 HUANG Chun-ping,JIANG Min,CHAI Gan.Fuzzy Control for Ramp Metering and Variable Speed Limitation of Freeway[J].,2010,(09):38.
[9]王丽娟.基于α(t)调整函数的模糊控制器优化研究[J].计算机技术与发展,2011,(05):44.
 WANG Li-juan.Research on Fuzzy Controller Optimization Based on Adjusting Function[J].,2011,(09):44.
[10]张英 魏晓华 吉小康.基于模糊控制和功率控制的风电偏航研究[J].计算机技术与发展,2011,(06):212.
 ZHANG Ying,WEI Xiao-hua,JI Xiao-kang.Yaw Control System's Research of Wind Power Based on Fuzzy Control and Power Control[J].,2011,(09):212.
[11]李社蕾,张潇,周望月. 基于模糊控制的自动泊车轨迹研究及仿真[J].计算机技术与发展,2017,27(02):163.
 LI She-lei,ZHANG Xiao,ZHOU Wang-yue. Simulation and Study of Automatic Parallel Parking Path Based on Fuzzy Control[J].,2017,27(09):163.
[12]张方舟,李龙,王雪珊. 节流管汇节流压力控制模糊自适应回馈仿真[J].计算机技术与发展,2017,27(03):147.
 ZHANG Fang-zhou,LI Long,WANG Xue-shan. Fuzzy Adaptive Feedback Simulation of Choke Manifold Throttle Pressure Control[J].,2017,27(09):147.

更新日期/Last Update: 2016-10-26