[1]谢人强,陈震. 基于共同评分项和权重计算的推荐算法研究[J].计算机技术与发展,2016,26(09):69-72.
 XIE Ren-qiang,CHEN Zhen. Research on Recommendation Algorithm Based on Co-rating and Weight Calculation[J].,2016,26(09):69-72.
点击复制

 基于共同评分项和权重计算的推荐算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年09期
页码:
69-72
栏目:
应用开发研究
出版日期:
2016-09-10

文章信息/Info

Title:
 Research on Recommendation Algorithm Based on Co-rating and Weight Calculation
文章编号:
1673-629X(2016)09-0069-04
作者:
 谢人强陈震
 福州外语外贸学院 信息系
Author(s):
 XIE Ren-qiangCHEN Zhen
关键词:
 协同过滤算法评分项综合权重准确度
Keywords:
 collaborative filtering algorithmco-ratingcomprehensive weightaccuracy
分类号:
TP391
文献标志码:
A
摘要:
 产生推荐列表是基于用户的协同过滤推荐算法的重要步骤,也是最终的结果。针对在基于用户的协同过滤推荐算法中,“产生推荐列表”环节的研究相对较少的这一现象,为了改进推荐算法的性能,通过权重计算和共同评分项方法来选定推荐项目,即首先将项目按照评分的近邻用户数量的多少进行排序,然后对排序的项目进行综合权重计算,将其结果由高到低进行再次排序,从而产生推荐列表。该算法经MovieLens数据集测试,在测试中使用“平均绝对误差”作为实验测评指标,结果表明,在目标用户的相似用户数为60时,该算法相较于不考虑共同评分项或综合权重计算因素的算法,有着更低的平均绝对误差,其值为0.77。该算法能够在一定程度上提高推荐系统的准确度。
Abstract:
 The recommended list is an important step of the user-based collaborative filtering recommendation algorithm and is also the fi-nal result. According to the phenomenon of less research on the“generation of recommendation list” in collaborative filtering recommen-dation algorithm based on user,in order to improve the performance of it,the recommended items are selected by weight calculation and the method of co-rating number. Firstly the co-rating items is sorted by the number of nearest neighbor. Then,the ranking items are cal-culated by comprehensive weight,and the results are sorted by high to low,and the recommended list is generated. The algorithm is tested by MovieLens data set. It uses the“Mean Absolute Error” as the evaluation index in the test. The results show that when the target user’ s similar user number is 60,the algorithm has a lower mean absolute error compare with those calculation algorithms which don’t consider the factors of common rating items or comprehensive weight,and the value is 0. 77. The algorithm can improve the accuracy of the rec-ommendation system to a certain extent.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(09):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(09):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(09):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(09):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(09):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(09):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(09):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(09):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(09):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(09):47.
[11]叶树鑫[],何聚厚[][]. 协作学习中基于协同过滤的学习资源推荐研究[J].计算机技术与发展,2014,24(10):63.
 YE Shu-xin[],HE Ju-hou[][]. esearch on Learning Material Recommendation Based on Collaborative Filtering Algorithm in Cooperative Learning[J].,2014,24(09):63.
[12]马婉贞,钱育蓉. 基于标签匹配的协同过滤推荐算法研究[J].计算机技术与发展,2017,27(07):25.
 MA Wan-zhen,QIAN Yu-rong. Investigation on Collaborative Filtering Recommendation Algorithm with Tag Matching[J].,2017,27(09):25.

更新日期/Last Update: 2016-10-25