[1]陶峥[] ],王洪玉[]. 基于卡方距离改进的WLAN室内定位算法[J].计算机技术与发展,2016,26(09):50-55.
 TAO Zheng[][],WANG Hong-yu[]. Improved WLAN Localization Algorithm Based on Chi-square Distance[J].,2016,26(09):50-55.
点击复制

 基于卡方距离改进的WLAN室内定位算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年09期
页码:
50-55
栏目:
应用开发研究
出版日期:
2016-09-10

文章信息/Info

Title:
 Improved WLAN Localization Algorithm Based on Chi-square Distance
文章编号:
1673-629X(2016)09-0050-06
作者:
 陶峥[1] 2]王洪玉[1]
 1.大连理工大学 电子信息与电气工程学部;2.解放军92124部队
Author(s):
 TAO Zheng[1][2] WANG Hong-yu[1]
关键词:
 室内定位无线局域网位置指纹卡方距离灵敏度法
Keywords:
 indoor localizationWLANfingerprintChi-square distancesensitivity method
分类号:
TP391
文献标志码:
A
摘要:
 基于WLAN的定位服务现今已成为智慧城市中一个很有吸引力的研究领域。在各种定位算法中,经典欧氏距离法的度量方式只考虑各实际位置点RSS向量之间的绝对距离,往往忽视各实际位置点RSS向量之间的相对距离;并且只能给各 AP 赋予相同的权重。为克服欧氏距离法的不足,提出了基于卡方距离及灵敏度法的 WLAN 室内定位方法( CSKNN)。该方法利用位置指纹信息建立参考点的指纹信息和测试点的指纹信息,然后利用更能反映特征量之间相对距离的卡方距离并结合灵敏度法对各AP权重进行修正,得出在当前定位环境中各AP在定位系统中的贡献,用加权后的卡方距离依据各参考点的指纹信息计算待定位点的位置。结果表明,该方法比传统的欧氏距离法精度高。
Abstract:
 WLAN-based localization service has become a hotspot for smarter city nowadays. Among the localization algorithms,the clas-sical Euclidean distance solely keeps count of the absolute distance between the RSSI vector and overlooks the relative distance between the RSSI vector. And it can only give the same weight to every AP. In order to overcome the defects of Euclidean distance,a new algo-rithm based on Chi-square distance and sensitivity method for WLAN indoor localization is proposed. The algorithm uses fingerprinting technique to make training dataset and testing dataset,then uses Chi-square distance and sensitivity method to correct the training dataset which will be used in the online localization phase and get the weight of every AP in the algorithm in order to improve positioning accura-cy. The results show that the proposed algorithm has better accuracy compared with the classical Euclidean distance.

相似文献/References:

[1]刘君 吴建国 褚曦丹 朱丽进 李炜.Cricket室内定位系统的研究与改进[J].计算机技术与发展,2011,(05):206.
 LIU Jun,WU Jian-guo,CHU Xi-dan,et al.Research and Improvement of Cricket Indoor Location System[J].,2011,(09):206.
[2]玄建永,王京春,陆耿,等.缩微智能车室内定位系统研究[J].计算机技术与发展,2014,24(01):1.
 XUAN Jian-yong,WANG Jing-chun,LU Geng,et al.Research on Indoor Position System for Autonomous Micro-vehicle[J].,2014,24(09):1.
[3]王凡,彭勇.基于TDOA的室内超声波定位方法的改进[J].计算机技术与发展,2014,24(06):250.
 WANG Fan,PENG Yong.Improved Indoor Location Method for Ultrasonic System Based on TDOA[J].,2014,24(09):250.
[4]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(09):1.
[5]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(09):5.
[6]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(09):13.
[7]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(09):21.
[8]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(09):25.
[9]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(09):29.
[10]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(09):34.
[11]杜月林[],石欣然[],王克寒[]. 基于ZigBee技术的室内定位系统算法研究及实现[J].计算机技术与发展,2014,24(07):245.
 DU Yue-lin[],SHI Xin-ran[],WANG Ke-han[]. Research and Realization of Indoor Positioning System Algorithm Based on ZigBee[J].,2014,24(09):245.
[12]玲玉,杨恒新,张昀. 基于无源UHF RFID的一种室内定位算法[J].计算机技术与发展,2015,25(06):110.
 QU Ling-yu,YANG Heng-xin,ZHANG Yun. An Indoor Location Algorithm Based on Passive UHF RFID[J].,2015,25(09):110.
[13]王语琪[][],巩应奎[]. 一种基于视觉信息的可见光通信室内定位方法[J].计算机技术与发展,2016,26(01):200.
 WANG Yu-qi[][],GONG Ying-kui[]. An Indoor Positioning Method of Visible Light Communication Based on Visual Information[J].,2016,26(09):200.
[14]程俊[],周礼争[],余敏[],等. 基于RSSI滤波的改进型泰勒级数室内定位算法[J].计算机技术与发展,2016,26(05):51.
 CHENG Jun[],ZHOU Li-zheng[],YU Min[],et al. Indoor Localization Algorithm of Improved Taylor Series Based on RSSI Filter[J].,2016,26(09):51.
[15]程海鸣[],黄玲[],徐鹤[],等. 基于RFID的图书馆书籍管理系统设计与实现[J].计算机技术与发展,2016,26(10):99.
 CHENG Hai-ming[],HUANG Ling[],XU He[],et al. Design and Implementation of Library Management System Based on RFID[J].,2016,26(09):99.
[16]王丽园[],吴沐阳[],吴家皋[][]. 基于WIFI BSSID相似度和RSSI概率分布的定位算法[J].计算机技术与发展,2016,26(12):200.
 WANG Li-yuan[],WU Mu-yang[],WU Jia-gao[][]. A Positioning Algorithm Based on WIFI BSSID Similarity and RSSI Probability Distribution[J].,2016,26(09):200.
[17]王田芳[],张玲华[].基于模糊分类和AP加权的室内定位算法[J].计算机技术与发展,2017,27(04):46.
 WANG Tian-fang[],ZHANG Ling-hua[]. Indoor Localization Algorithm with Fuzzy Classification and AP Weighting[J].,2017,27(09):46.

更新日期/Last Update: 2016-10-25