[1]茅利锋,张伟. 基于隐含狄利克雷模型的文献主题演化预测[J].计算机技术与发展,2016,26(09):34-38.
 MAO Li-feng,ZHANG Wei. Topic Evolution and Prediction of Scientific Papers Based on Latent Dirichlet Allocation Model[J].,2016,26(09):34-38.
点击复制

 基于隐含狄利克雷模型的文献主题演化预测()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年09期
页码:
34-38
栏目:
应用开发研究
出版日期:
2016-09-10

文章信息/Info

Title:
 Topic Evolution and Prediction of Scientific Papers Based on Latent Dirichlet Allocation Model
文章编号:
1673-629X(2016)09-0034-05
作者:
 茅利锋张伟
 南京邮电大学 计算机学院
Author(s):
 MAO Li-fengZHANG Wei
关键词:
 隐含狄利克雷分配模型主题演化预测马尔可夫链状态转移
Keywords:
 Latent Dirichlet Allocationtopic evolution and predictionMarkov Chainstate transition
分类号:
TP301
文献标志码:
A
摘要:
 利用隐含狄利克雷分配模型( LDA),根据科技文献往年的主题变化来分析科技文献主题的演化,是目前主题演化研究的热点。根据科技论文的主题演化具有无后效性的特点,使用马尔可夫链来预测主题的演化信息。该方法利用LDA模型获取不同时段的主题,使用相似度等方法对相邻时间窗口的主题进行关联,并根据主题的强度将主题分为热门主题、普通主题和冷门主题,最后利用马尔可夫链得到主题之间的强度转移概率矩阵,对主题的强度变化趋势进行分析和预测。对NIPS论文集进行实验表明,科技论文主题在长时间演化后,其状态占比趋于稳定,热门主题、普通主题和冷门主题占比将保持在30%、60%和10%左右。说明该方法能有效地根据现有的主题演化结果对主题在未来几年的演化信息进行预测。
Abstract:
 According to the change of the topic of scientific papers in previous years,to analyze the evolution of scientific papers based on Latent Dirichlet Allocation (LDA) is the current research focus. Through the aftereffect for topic evolution of scientific paper,Markov Chain is used to predict the evolution information of topic. In this method,LDA is used first to obtain the topics in different time win-dows,then some calculation method like similarity is used to associate with topics in neighboring time window. According to the intensity of topics,these topics are divided into 3 states including popular,normal and cold. Finally,the state transition matrix which is gained by the Markov Chain is used to analyze and forecast the trend of topic evolution. The experiment on proceedings of NIPS shows that after a long period evolution,the state proportion of topics of scientific papers is stabilized,with hot 30%,normal 60% and cold 10% remained, which shows that this method can effectively predict the trend of topic evolution in the next few years according to the existing evolution-ary information.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(09):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(09):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(09):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(09):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(09):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(09):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(09):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(09):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(09):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(09):47.

更新日期/Last Update: 2016-10-25