[1]李金洋[][],陈仪香[][][],王振辉[][]. 基于车速的自适应交通信号灯控制系统[J].计算机技术与发展,2016,26(09):21-25.
 LI Jin-yang[][],CHEN Yi-xiang[][][],WANG Zhen-hui[[][]. A Self-adaptive Traffic Light Control System Based on Speed of Vehicles[J].,2016,26(09):21-25.
点击复制

 基于车速的自适应交通信号灯控制系统()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年09期
页码:
21-25
栏目:
应用开发研究
出版日期:
2016-09-10

文章信息/Info

Title:
 A Self-adaptive Traffic Light Control System Based on Speed of Vehicles
文章编号:
1673-629X(2016)09-0021-05
作者:
 李金洋[1][2] 陈仪香[1][2][3]王振辉[1][3]
1.华东师范大学 计算机科学与软件工程学院 嵌入式软件与系统系;2.教育部软硬件协同设计技术与应用工程研究中心;3.国家可信嵌入式软件工程技术研究中心
Author(s):
 LI Jin-yang[1][2]CHEN Yi-xiang[1][2][3]WANG Zhen-hui[[1][3]
关键词:
 智能交通系统自适应 交通信号灯控制V2 I通讯
Keywords:
 ITS self-adaptive traffic light control V2I
分类号:
TP302
文献标志码:
A
摘要:
 随着经济发展与人们生活水平的提高,城市机动车数量快速增长,城市交通引发的拥堵、环境污染等问题日益严重。智能交通系统( Intelligent Transportation System,ITS)已经成为国内外研究人员讨论和研究的最热门课题之一,其中如何解决交通拥堵问题尤为重要。为了改善路口交通状况,提高通行效率,提出了一种基于车速的自适应交通信号灯控制系统。系统采用车联网V2I(Vehicle to Infrastructure)通讯模式,利用V2I通讯协议,实现汽车与交通信号灯之间数据的传输。汽车在通过路口时将车速信息发送给该路口的交通信号灯,系统通过分析十字路口和十字路口前方车速信息和交通信号灯当前状态,实时地控制红绿灯的显示,实现红绿灯控制依据实时车流量进行实时自动调整。该系统能够减少十字路口的拥堵,从而有效缓解交通拥堵,提高道路通行能力。
Abstract:
 With the development of economy and the improvement of people’ s living standard,the number of vehicles in city is growing rapidly,and the congestion and environment pollution and other problems caused by traffic are becoming more serious. ITS ( Intelligent Transportation System) has become one of the hottest topics discussed by domestic and foreign researchers,and how to solve the traffic congestion problem is especially important in ITS. In order to improve traffic condition in intersections and to enhance traffic efficiency, a self-adaptive traffic light control system based on vehicle speed is proposed. It is an instance of V2I (Vehicle to Infrastructure) com-munication model,which realizes data transmission between vehicles and traffic light by using V2I protocols. Vehicles send speed messa-ges to the traffic light when passing the intersection,and the system controls by itself the traffic light by analyzing the speed of cars in both cross and the front and current state of the traffic light. This system can improve the traffic capacity and ease traffic congestion effec-tively through decreasing the congestion in intersection.

相似文献/References:

[1]方良松 余春艳.基于数字荷尔蒙模型的信号灯配时优化的研究[J].计算机技术与发展,2009,(01):143.
 FANG Liang-song,YU Chun-yan.Digital Hormones Model- Based Optimal Time Assignment of Traffic Signal Cycle[J].,2009,(09):143.
[2]雷云 王夏黎 孙华.基于视频的交通目标跟踪方法研究[J].计算机技术与发展,2010,(07):44.
 LEI Yun,WANG Xia-li,SUN Hua.The Research about Transport Target Tracking Based on Video[J].,2010,(09):44.
[3]芦东昕 李典蔚 任静 柳长安.基于组件式GIS的移动奥运智能交通系统[J].计算机技术与发展,2007,(05):59.
 LU Dong-xin,LI Dian-wei,REN Jing,et al.Research of Intelligent Transport System for Olympic Games Based on Component GIS[J].,2007,(09):59.
[4]芦东昕 李典蔚 柳长安.基于AJAX和Servlet的Web GIS的研究与实现[J].计算机技术与发展,2007,(03):193.
 LU Dong-xin,LI Dian-wei,LIU Chang-an.Research & Implementation of Web GIS Based on AJAX and Servlet[J].,2007,(09):193.
[5]李海文 任静 张李秋.交通监控系统中信息发布平台的设计与实现[J].计算机技术与发展,2007,(04):52.
 LI Hai-wen,PEN Jing,ZHANG Li-qiu.Design and Implementation of Information Distributing Platform of Intelligent Transportation Monitoring Management System[J].,2007,(09):52.
[6]徐武 杨印根 周卫东 吴克捷.智能交通系统模型的算法分析与改进[J].计算机技术与发展,2006,(12):162.
 XU Wu,YANG Yin-gen,ZHOU Wei-dong,et al.Analysis and Improvement of Algorithms for ITS Model[J].,2006,(09):162.
[7]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(09):1.
[8]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(09):5.
[9]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(09):13.
[10]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(09):21.
[11]郭新. 一种改进的短期交通流量预测算法研究[J].计算机技术与发展,2015,25(02):103.
 GUO Xin. Research on an Improved Prediction Algorithm for Short-term Traffic Flow [J].,2015,25(09):103.

更新日期/Last Update: 2016-10-24