[1]徐传敬,赵敏,李天明. 一种改进遗传算法的PID参数整定研究[J].计算机技术与发展,2016,26(09):12-15.
 XU Chuan-jing,ZHAO Min,LI Tian-ming. Research on PID Parameter Tuning Based on an Improved Genetic Algorithm[J].,2016,26(09):12-15.
点击复制

 一种改进遗传算法的PID参数整定研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年09期
页码:
12-15
栏目:
应用开发研究
出版日期:
2016-09-10

文章信息/Info

Title:
 Research on PID Parameter Tuning Based on an Improved Genetic Algorithm
文章编号:
1673-629X(2016)09-0012-04
作者:
 徐传敬赵敏李天明
 南京航空航天大学 自动化学院
Author(s):
 XU Chuan-jing ZHAO Min LI Tian-ming
关键词:
 遗传算法  PID控制  选择算子  交叉算子 变异算子
Keywords:
 genetic algorithm PID control selection operator crossover operator mutation operator
分类号:
TP301.6
文献标志码:
A
摘要:
 PID控制是迄今为止最通用的控制方法,具有结构简单、稳定性好、工作可靠、调整方便等优点,广泛应用于工业控制领域。在PID控制中,PID参数的选择决定了控制系统的稳定性和快速性。在传统的PID参数整定中多采用试验凑试法,该方法费时费力,而且难以满足要求。为了解决此问题,提出一种改进遗传算法的PID参数整定方法。对基本遗传算法的选择算子、交叉算子和变异算子进行改进,弥补了基本遗传算法易陷于局部最优的缺点,加快了算法收敛速度。仿真结果表明,该方法具有一定的可行性。
Abstract:
 PID control is the most common control method so far. It has the advantages of simple structure,good stability,reliable opera-tion,easy adjustment and so on,which is widely used in the field of industrial control. In PID control,the stability and speed of the control system is determined by the choice of PID parameters. In the traditional PID parameter tuning,the trial and error method is used widely. However,this method is time-consuming,and it is difficult to meet the requirements. In order to solve this problem,a PID parameter tun-ing method is proposed based on improved genetic algorithm. The selection operator,crossover operator and mutation operator are im-proved. The method makes up for shortcomings which the basic genetic algorithm is easy to fall into local optimum. It speeds up the con-vergence rate of genetic algorithm. Simulation show that it is feasible.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(09):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(09):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(09):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(09):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(09):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(09):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(09):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(09):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(09):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(09):47.

更新日期/Last Update: 2016-10-24