[1]吴彩芳[],谢钧[],俞璐[]. 基于骨骼和深度信息的手势识别的研究与应用[J].计算机技术与发展,2016,26(08):200-204.
 WU Cai-fang[],XIE Jun[],YU Lu[]. Research and Application of Gesture Recognition Based on Information of Body Skeleton and Depth[J].,2016,26(08):200-204.
点击复制

 基于骨骼和深度信息的手势识别的研究与应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年08期
页码:
200-204
栏目:
应用开发研究
出版日期:
2016-08-10

文章信息/Info

Title:
 Research and Application of Gesture Recognition Based on Information of Body Skeleton and Depth
文章编号:
1673-629X(2016)08-0200-05
作者:
 吴彩芳[1]谢钧[1]俞璐[2]
 1.解放军理工大学 指挥信息系统学院;2.解放军理工大学 通信工程学院
Author(s):
 WU Cai-fang[1]XIE Jun[1]YU Lu[2]
关键词:
 静态手势识别手势交互系统Hu矩支持向量机
Keywords:
 static gesture recognitiongesture interactive systemHu’s momentsupport vector machine
分类号:
TP391.4
文献标志码:
A
摘要:
 文中研究了基于Kinect的手势识别技术,设计并实现了一个功能完善、性能优越的小型手势交互系统。首先结合Kinect获取的人体骨骼信息和深度信息,实现了手部的追踪和提取,并且实验效果不受实验背景、光线、实验者的肤色和服装的影响。然后根据初步获取的手型二值图噪声分布特点,提出一种过滤小规模连通分量像素点的方法对二值图进行去噪。最后,分别以手型二值图Hu矩和手型轮廓二值图Hu矩为特征,使用SVM分类器进行训练和识别。实验结果表明,同手型二值图的Hu矩相比,以手型轮廓二值图的Hu矩作为特征具有明显优势。
Abstract:
 It explores the technology of gesture recognition based on Kinect in this paper,and designs and implements a small gesture in-teractive system with perfect function and excellent performance. At first,the Skeleton Information and Depth Information from Kinect is used to track and extract hand from the background. The result doesn’ t be affected by the background,light,and experimenter’ s skin col-or and costume. Then,according to the distribution of noise from preliminary acquisition in the binary images,a method of filtering the small scale connected component pixels is put forward to denoise. At last,Hu’ s moments of hand binary images and hand contour binary images are used as features to train the Support Vector Machine ( SVM) classifiers respectively. The experimental results show that com-pared with Hu’ s moments of hand binary images,the Hu’ s moments of the hand contour binary images have obvious advantages.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(08):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(08):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(08):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(08):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(08):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(08):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(08):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(08):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(08):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(08):47.

更新日期/Last Update: 2016-09-29