[1]吕传龙[],曹华杰[],刘浩东[]. 自平衡机器人中数据融合算法的研究与实现[J].计算机技术与发展,2016,26(08):35-38.
 LV Chuan-long[],CAO Hua-jie[],LIU Hao-dong[]. Research and Implementation of Data Fusion Algorithm for Self-balancing Robot[J].,2016,26(08):35-38.
点击复制

 自平衡机器人中数据融合算法的研究与实现()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年08期
页码:
35-38
栏目:
智能、算法、系统工程
出版日期:
2016-08-10

文章信息/Info

Title:
 Research and Implementation of Data Fusion Algorithm for Self-balancing Robot
文章编号:
1673-629X(2016)08-0035-04
作者:
 吕传龙[1]曹华杰[2] 刘浩东[1]
 1.西南交通大学 电气工程学院;2.西南交通大学 信息科学与技术学院
Author(s):
 LV Chuan-long[1]CAO Hua-jie[2]LIU Hao-dong[1]
关键词:
 自平衡机器人加速度计陀螺仪 卡尔曼算法数据融合
Keywords:
 self balancing robotaccelerometergyroscopeKalman algorithmdata fusion
分类号:
TP301.6
文献标志码:
A
摘要:
 轮式自平衡机器人是一种通用的机器人,它适用于各种复杂环境中,通过陀螺仪和加速度计采集的数据可以控制其平衡性,但是不够精确和实时。为了进一步提高系统的响应,文中通过离散卡尔曼算法将ENC03陀螺仪和MMA7260加速度计采集的数据进行融合输出。首先研究了传统的卡尔曼算法,然后建立了适合自平衡机器人的算法模型,最后介绍了其工程实现。通过实时监测可以看出,在未进行角度融合之前,加速度计计算得出的角度在静态和动态都有着极大的噪声。经过卡尔曼滤波算法融合后的角度平滑稳定,达到了预期效果。
Abstract:
 Self-balancing robot is general and uses the data collected by gyroscope and accelerometer to control its balance,which can be applied to various complex environments. In order to improve the response of the system because of its limited accuracy and punctuality, the discrete Kalman algorithm is utilized for fusion of the data acquired from the gyroscope ( ENC-03 ) and accelerometer ( MMA-7260). Research of the traditional Kalman algorithm is carried on,then establishment of its model for self balancing robot,finally intro-duction of its engineering implementation. According to the real-time monitoring,it can be seen that the angle calculated from the acceler-ometer without angle infusion has great noise both in its dynamic and static aspects. The angle acquired from Kalman filtering algorithm fusion is smooth and stable,achieving the desired effect.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(08):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(08):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(08):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(08):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(08):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(08):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(08):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(08):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(08):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(08):47.

更新日期/Last Update: 2016-09-29