[1]殷龙,衡红军. 基于最邻近算法的机场特种车辆调度应用研究[J].计算机技术与发展,2016,26(07):151-155.
 YIN Long,HENG Hong-jun. Research on Application of Airport Special Vehicles Scheduling Based on Nearest Neighbors Algorithm[J].,2016,26(07):151-155.
点击复制

 基于最邻近算法的机场特种车辆调度应用研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年07期
页码:
151-155
栏目:
应用开发研究
出版日期:
2016-07-10

文章信息/Info

Title:
 Research on Application of Airport Special Vehicles Scheduling Based on Nearest Neighbors Algorithm
文章编号:
1673-629X(2016)07-0151-05
作者:
 殷龙衡红军
 中国民航大学 计算机科学与技术学院
Author(s):
 YIN LongHENG Hong-jun
关键词:
 车辆路径问题最邻近算法时间窗车辆调度机场特种车辆
Keywords:
 Vehicle Routing Problem ( VRP)nearest neighbors algorithmtime windowvehicle schedulingairport special vehicle
分类号:
TP249
文献标志码:
A
摘要:
 航班在机场过站期间需要接受清洁、配餐、加水、燃油加注、装卸行李货物等一系列地面保障服务。这些服务主要通过一些不同类型的特种车辆(如清洁车、配餐车、加油车、行李车等)来完成。车辆的优化调度对提高航班正点率和资源利用率至关重要。目前我国民航机场对特种车辆的调度大都是依靠人工调度,单车单航班服务。这种低效率调度方式的车辆利用率不高,并且也是造成航班延误的重要因素。为保证航班正点运行,机场特种车辆必须高效完成地面保障服务任务。文中以燃油加注服务为研究对象,首先根据机场燃油加注服务的业务构建了带时间窗约束的特种车辆调度的数学模型;然后研究利用最邻近算法实现对模型的求解,并以国内某机场某天的实际数据为例,验证了模型求解算法在该问题上的有效性;最后得出了最优的燃油加注任务分配结果。实验结果表明,利用该算法调度特种车辆可大幅降低服务成本。
Abstract:
 During the flight over the airport station,it will be in need of a series of ground support service such as cleaning,catering,water adding,refueling,cargo loading and unloading,which is finished with up some kind of different types of vehicles such as cleaning cars, catering trucks,fuel trucks,luaggage cars,etc. Optimal scheduling is of great importance in improving the punctuality rate and resources u-tilization for flight. At present,most of scheduling of the airport in China to the special vehicle is manual,single vehicle with single flight service. This inefficient approach makes the low usage of the vehicle,thus it becomes one of the important factor of the delaying for a flight. In order to ensure the punctuality of the flight,airport special vehicles must finish the ground support service efficiently. Putting re-fueling service as the object,first of all,a mathematical model with time window constraints according to the business of the airport refue-ling service is built in this paper. After that,the research of using the nearest neighbor algorithm on the solution of the model is given,and taking the actual flight data of a domestic airport as an example,the model is verified the effectiveness on the issue. At last,the optimum fuel filler task allocation result is obtained. Experimental results show that the algorithm can greatly reduce the service cost for special scheduling vehicles.

相似文献/References:

[1]赵传信 张雪东 季一木[].改进的粒子群算法在VRP中的应用[J].计算机技术与发展,2008,(06):240.
 ZHAO Chuan-xin,ZHANG Xue-dong,JI Yi-mu.Application of Improved Particle Swarm Optimization in VRP[J].,2008,(07):240.
[2]邓伟林 胡桂武.一种求解离散优化问题的粒子群算法[J].计算机技术与发展,2012,(05):116.
 DENG Wei-lin,HU Gui-wu.A Particle Swarm Algorithm for Discrete Optimization Problem[J].,2012,(07):116.
[3]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(07):1.
[4]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(07):5.
[5]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(07):13.
[6]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(07):21.
[7]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(07):25.
[8]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(07):29.
[9]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(07):34.
[10]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(07):38.
[11]谢骊玲,宋彦斌,杨坦,等. 求解车辆路径问题的改进MMAS算法[J].计算机技术与发展,2016,26(03):27.
 XIE Li-ling,SONG Yan-bin,YANG Tan,et al. An Improved MMAS for Vehicle Routing Problem[J].,2016,26(07):27.

更新日期/Last Update: 2016-09-28