[1]陈宗言,颜俊. 基于稀疏数据预处理的协同过滤推荐算法[J].计算机技术与发展,2016,26(07):59-64.
 CHEN Zong-yan,YAN Jun. Collaborative Filtering Recommendation Algorithm Based on Sparse Data Pre-processing[J].,2016,26(07):59-64.
点击复制

 基于稀疏数据预处理的协同过滤推荐算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年07期
页码:
59-64
栏目:
智能、算法、系统工程
出版日期:
2016-07-10

文章信息/Info

Title:
 Collaborative Filtering Recommendation Algorithm Based on Sparse Data Pre-processing
文章编号:
1673-629X(2016)07-0059-06
作者:
 陈宗言颜俊
 南京邮电大学 通信与信息工程学院;宽带无线通信与传感网技术教育部重点实验室
Author(s):
 CHEN Zong-yanYAN Jun
关键词:
 推荐系统协同过滤特征属性稀疏数据集 混合填充
Keywords:
 recommender systemcollaborative filteringitem characteristicssparse data sethybrid filling
分类号:
TP311
文献标志码:
A
摘要:
 随着推荐系统规模的不断扩大,用户-项目评分矩阵呈现出极端稀疏性,导致基于传统相似性度量方法的协同过滤推荐系统推荐质量的下降。针对该问题,文中提出了一种基于项目特征属性的稀疏数据集预处理方法来提高算法的推荐质量。首先,通过引入项目的特征属性信息,根据项目间特征属性相似度,初步预测用户对未评分项目的评分,可以使得用户-项目评分矩阵完全饱和。接着再对稀疏数据集的未评分项目进行混合填充预处理,避免了传统均值填充法中的用户对项目的评分不可能完全相同的问题以及众数填充法中的“多众数”和“无众数”问题。实验结果表明,文中提出的方法更能有效地提高推荐系统的推荐质量和推荐覆盖率。
Abstract:
 With the continuous expansion of recommender systems,the sparsity of the user-item matrix can deteriorate the performance of the traditional similarity calculation based collaborative filtering recommendation approaches. In order to overcome this drawback,a new sparse data pre-processing algorithm based on item feature is proposed to mitigate this effect. First,considering the item characteristics in-formation,the ratings of the unrated items are predicted through the similarities between each item. It can lead to saturated matrix and o-vercome the drawback of the sparsity matrix. Next,the hybrid filling method is utilized to process the unrated items in the sparse data sets,which can avoid the problem of full no consistency of different items for traditional mean-filling method and the multiple mode and no mode for the mode-filling approaches. The simulation demonstrates that the proposed algorithm can improve the recommended quality and coverage dramatically.

相似文献/References:

[1]邵延振 蒙韧 袁鼎荣 李新友.基于Web结构分区的协同过滤推荐算法研究[J].计算机技术与发展,2010,(06):67.
 SHAO Yan-zhen,MENG Ren,YUAN Ding-rong,et al.Collaborative Filtering Recommendation Algorithm Research Based on Web Blocks[J].,2010,(07):67.
[2]曹毅 贺卫红.基于内容过滤的电子商务推荐系统研究[J].计算机技术与发展,2009,(06):182.
 CAO Yi,HE Wei-hong.Research on E- Commerce Recommender System Based on Content - Based Filtering[J].,2009,(07):182.
[3]赵鹏 蔡庆生 王清毅.一种用于文章推荐系统中的用户模型表示方法[J].计算机技术与发展,2007,(01):4.
 ZHAO Peng,CAI Qing-sheng,WANG Qing-yi.A Novel Representation of User Profile in Document Recommendation System[J].,2007,(07):4.
[4]高静 应吉康.基于人工免疫系统的推荐系统[J].计算机技术与发展,2007,(05):180.
 GAO Jing,YING Ji-kang.A Recommendation System Based on Artificial Immune System[J].,2007,(07):180.
[5]游文 叶水生.电子商务推荐系统中的协同过滤推荐[J].计算机技术与发展,2006,(09):70.
 YOU Wen,YE Shui-sheng.A Survey of Collaborative Filtering Algorithm Applied in E- commerce Recommender System[J].,2006,(07):70.
[6]华铨平.基于FNN的家纺产品个性化推荐系统的研究[J].计算机技术与发展,2011,(09):183.
 HUA Quan-ping.Research on Personalized Recommendation System of Textile Products Used by Family Based on FNN[J].,2011,(07):183.
[7]马言春 彭志平.基于市场机制的云服务管理研究[J].计算机技术与发展,2012,(03):214.
 MA Yan-chun,PENG Zhi-ping.Research on Cloud Service Management Based on Market Mechanism[J].,2012,(07):214.
[8]刘厚良.网络协同戏剧中个性化戏剧资源推荐系统[J].计算机技术与发展,2012,(08):25.
 LIU Hou-liang.Personalized Drama Resource Recommendation System in Cooperative Play[J].,2012,(07):25.
[9]陆晓敏 崇志宏 陈国庆.基于本体的商品推荐方法[J].计算机技术与发展,2012,(10):10.
 LU Xiao-min,CHONG Zhi-hong,CHEN Guo-qing.Product Recommending Method Based on Ontology[J].,2012,(07):10.
[10]范虎,花伟伟.协同过滤推荐算法的研究与改进[J].计算机技术与发展,2013,(09):66.
 FAN Hu[],HUA Wei-wei[].Research and Improvement of Collaborative Filtering Recommendation Algorithm[J].,2013,(07):66.
[11]于海平[],林晓丽[],刘会超[]. 基于数据挖掘的移动广告个性化推荐研究[J].计算机技术与发展,2014,24(08):234.
 YU Hai-ping[],LIN Xiao-li[],LIU Hui-chao[]. Research of Mobile Internet Advertising Personalized Recommendation Based on Data Mining[J].,2014,24(07):234.
[12]李荟,谢强,丁秋林. 一种基于情景的协同过滤推荐算法[J].计算机技术与发展,2014,24(10):42.
 LI Hui,XIEQiang,DING Qiu-lin. A Collaborative Filtering Recommendation Algorithm Based on Scenario[J].,2014,24(07):42.
[13]程高伟,丁亦喆,吴振强. 结合用户评分和项目标签的协同过滤算法[J].计算机技术与发展,2015,25(03):71.
 CHENG Gao-wei,DING Yi-zhe,WU Zhen-qiang. Collaborative Filtering Algorithm Combined User Ratings with Item Tags[J].,2015,25(07):71.
[14]张晓琳,付英姿,褚培肖. 杰卡德相似系数在推荐系统中的应用[J].计算机技术与发展,2015,25(04):158.
 ZHANG Xiao-lin,FU Ying-zi,CHU Pei-xiao. Application of Jaccard Similarity Coefficient in Recommender System[J].,2015,25(07):158.
[15]徐新瑞,孟彩霞,周雯,等. 一种基于Spark时效化协同过滤推荐算法[J].计算机技术与发展,2015,25(06):48.
 XU Xin-rui,MENG Cai-xia,ZHOU Wen,et al. A Real-time Collaborative Filtering Recommendation Algorithm Based on Spark[J].,2015,25(07):48.
[16]周莹莹,王晓军. 利用离群点算法预处理协同过滤推荐系统数据[J].计算机技术与发展,2015,25(09):129.
 ZHOU Ying-ying,WANG Xiao-jun. Pre-filtering Data of Collaborative Filtering Recommendation System by Outliers Algorithm[J].,2015,25(07):129.
[17]张天杰,曹苏燕,闫世洋. 基于项目近邻的约束概率矩阵分解算法[J].计算机技术与发展,2016,26(10):64.
 ZHANG Tian-jie,CAO Su-yan,YAN Shi-yang. A Constrained Probabilistic Matrix Factorization Algorithm Based on Item-neighborhood[J].,2016,26(07):64.
[18]张应辉,司彩霞. 基于用户偏好和项目特征的协同过滤推荐算法[J].计算机技术与发展,2017,27(01):16.
 ZHANG Ying-hui,SI Cai-xia. A Collaborative Filtering Algorithm Based on Interest of User and Attributes of Item[J].,2017,27(07):16.
[19]张龙昌,张洪锐. 数字资源云服务推荐系统设计[J].计算机技术与发展,2017,27(08):139.
 ZHANG Long-chang,ZHANG Hong-rui. Design of Recommender System with Cloud Services of Digital Resource[J].,2017,27(07):139.
[20]施海鹰. 基于关联规则挖掘的分类随机游走算法[J].计算机技术与发展,2017,27(09):1.
 SHI Hai-ying. Random-walk Classification Algorithm with Association Rules Mining[J].,2017,27(07):1.

更新日期/Last Update: 2016-09-28