[1]吴少华,单剑锋. 基于改进蜂群算法的数字信号调制识别[J].计算机技术与发展,2016,26(07):46-50.
  A Modulation Identification Algorithm for Digital Signals Based on Modified Artificial Bee Colony Algorithm[J].,2016,26(07):46-50.
点击复制

 基于改进蜂群算法的数字信号调制识别()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年07期
页码:
46-50
栏目:
智能、算法、系统工程
出版日期:
2016-07-10

文章信息/Info

Title:
 A Modulation Identification Algorithm for Digital Signals Based on Modified Artificial Bee Colony Algorithm
文章编号:
1673-629X(2016)07-0046-05
作者:
 吴少华单剑锋
 南京邮电大学 电子科学与工程学院
Author(s):
 WU Shao-hua,SHAN Jian-feng
关键词:
 人工蜂群欧氏距离二维均匀设计支持向量机调制识别
Keywords:
 artificial bee colony Euclidean-distancetwo-dimensional uniform designsupport vector machinesmodulation identifica-tion
分类号:
TP911
文献标志码:
A
摘要:
 针对传统人工蜂群( ABC)算法初始种群在解空间分布不均匀、收敛速度慢等缺点,文中提出一种基于二维均匀设计和欧氏距离的改进蜂群算法。改进蜂群算法在构造初始食物源时采用二维均匀设计使食物源在解空间均匀分布,提高了算法的全局搜索能力;在构造新食物源时采用欧氏距离法提高了算法的寻优效率。文中利用信号二阶以上累积量可以抑制噪声影响的特性,从二阶、四阶和六阶累积量中提取四个特征参数作为特征向量,采用支持向量机分类器,并用改进蜂群算法对支持向量机的惩罚因子和核函数参数进行优化,实现了2FSK、BPSK、QPSK、16QAM、64QAM五种调制方式的分类识别。仿真结果表明,改进蜂群算法具有更快的收敛速度,且改进ABC-SVM方法在信噪比-3 dB时具有更好的识别效果,平均识别率为92.9%;当信噪比超过4 dB时,改进ABC-SVM方法平均识别率达到99%。
Abstract:
 In view of the slow convergence speed and non-uniform distribution of the initial food source of traditional Artificial Bee Colo-ny ( ABC) algorithm,a modified ABC algorithm based on two-dimensional uniform design and Euclidean-distance has been proposed. Two-dimensional uniform design is used to make the food source uniformly distribute in the solution space when the modified ABC algo-rithm establishes the food source,which can improve the global search ability of the algorithm. Euclidean-distance is applied in construc-ting new food source to improve the efficiency optimization. In this paper,four feature parameters which are picked up from second-or-der,fourth-order and sixth-order cumulants are obtained as a feature vector because second and higher order cumulants can suppress ad-ditive white Gaussian noise. SVM classifier and modified ABC algorithm is used to optimize the penalty factor and kernel function param-eter,realizing the identification of 2FSK,BPSK,QPSK,16QAM and 64QAM. The simulation results show that the convergence speed of modified ABC algorithm is improved and the average recognition rate is 92. 9% when SNR is-3 dB,as well as over 99% when SNR is more than 4 dB.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(07):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(07):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(07):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(07):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(07):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(07):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(07):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(07):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(07):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(07):47.
[11]袁小艳. 改进的混合人工蜂群算法的研究[J].计算机技术与发展,2014,24(12):92.
 YUAN Xiao-yan. Research on Modified Hybrid Artificial Colony Algorithm[J].,2014,24(07):92.

更新日期/Last Update: 2016-09-28