[1]王巍. 基于云参数贝叶斯网络的威胁评估方法[J].计算机技术与发展,2016,26(06):106-110.
 WANG Wei. An Threat Assessment Method Based on Cloud Parameters Bayesian Network[J].,2016,26(06):106-110.
点击复制

 基于云参数贝叶斯网络的威胁评估方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年06期
页码:
106-110
栏目:
应用开发研究
出版日期:
2016-06-10

文章信息/Info

Title:
 An Threat Assessment Method Based on Cloud Parameters Bayesian Network
文章编号:
1673-629X(2016)06-0106-05
作者:
 王巍
 南京航空航天大学 计算机科学与技术学院
Author(s):
 WANG Wei
关键词:
 威胁评估贝叶斯网络云模型Noisy-OR
Keywords:
 threat assessmentBayesian networkscloud modelNoisy-OR
分类号:
TP311
文献标志码:
A
摘要:
 文中以威胁评估为背景,针对威胁评估中样本数据不充足,专家构建贝叶斯网络参数工作量大的问题,提出了基于云参数贝叶斯网络的威胁评估方法。把云的表达能力与贝叶斯网络的推理能力相结合,一是运用云的表达能力构建贝叶斯网络参数,二是运用贝叶斯网络的推理能力计算后验概率。首先,以状态组合权值为媒介运用专家知识构建隶属云模型,并利用状态组合权值的不确定度将隶属云模型转换为条件概率表,从而达到以较少的专家工作完成评估模型构建的目的;其次,运用专家构建的威胁评估贝叶斯网络和生成的条件概率表进行威胁评估推理,得到最终的评估结果。实验结果表明,该方法生成的条件概率表的统计数据与专家知识相符,并能有效地应用于威胁评估之中。
Abstract:
 For the disadvantages of lacking sample data of threat assessment and large workload of experts building Bayesian network,a threat assessment method based on cloud parameters Bayesian network is proposed. The method combines cloud model expression ability with Bayesian network inference ability. On the one hand,the cloud expression ability is used to build a Bayesian network parameters,on the other hand,the Bayesian network inference ability is applied to calculate the posterior probability. First,it uses expert knowledge to generate membership cloud parameters with the media of state combination weight and converts membership cloud to conditional proba-bility tables by the uncertainty of state combination weights,so as to achieve the purpose to build the assessment model in less workload of experts. Then use of Bayesian network of threat assessment built by experts and conditional probability table generated for threat assess-ment reasoning,the final evaluation results are obtained. The experiment shows that this method is generated in line with the experts ex-pected,and can be effectively applied to threat assessment.

相似文献/References:

[1]谢振国 凌捷.网络安全预警系统的研究[J].计算机技术与发展,2011,(11):250.
 XIE Zhen-guo,LING Jie.Study of a Network Security and Early-Warning System[J].,2011,(06):250.
[2]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(06):1.
[3]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(06):5.
[4]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(06):13.
[5]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(06):21.
[6]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(06):25.
[7]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(06):29.
[8]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(06):34.
[9]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(06):38.
[10]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(06):43.
[11]王巍,燕雪峰. 基于面向对象贝叶斯网络的威胁评估模型[J].计算机技术与发展,2016,26(05):7.
 WANG Wei,YAN Xue-feng. Threat Source Comprehensive Evaluation Model Based on Object-oriented Bayesian Networks[J].,2016,26(06):7.

更新日期/Last Update: 2016-09-20