[1]李龙龙[][][],何东健[],王美丽[]. 模糊半监督加权聚类算法的有效性评价研究[J].计算机技术与发展,2016,26(06):65-68.
 LI Long-long[][][],HE Dong-jian[],WANG Mei-li[]. Study of Clustering Validity Evaluation on Semi-supervised Clustering Algorithm with Feature Discrimination[J].,2016,26(06):65-68.
点击复制

 模糊半监督加权聚类算法的有效性评价研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年06期
页码:
65-68
栏目:
智能、算法、系统工程
出版日期:
2016-06-10

文章信息/Info

Title:
 Study of Clustering Validity Evaluation on Semi-supervised Clustering Algorithm with Feature Discrimination
文章编号:
1673-629X(2016)06-0065-04
作者:
 李龙龙[1][2][3]何东健[2]王美丽[4]
1. 陕西工业职业技术学院 信息工程学院;2. 西北农林科技大学 机械与电子工程学院;3. 英国诺丁汉大学 计算机学院;4.西北农林科技大学 信息工程学院
Author(s):
 LI Long-long[1][2][3]HE Dong-jian[2]WANG Mei-li[4]
关键词:
 聚类有效性半监督聚类算法评估成对约束最佳聚类数
Keywords:
 clustering validitysemi-supervised clusteringalgorithm evaluationpairwise constraintsoptimal clustering number
分类号:
TP182
文献标志码:
A
摘要:
 鉴于最佳聚类数在提高聚类算法性能并扩大其应用领域方面的重要性,为了有效解决聚类算法中最佳聚类数的确定问题,解决传统的聚类分析算法常常需要人为预先指定聚类数的缺点,文中提出一种新型模糊半监督加权聚类算法。首先使用该算法对实测数据进行聚类,获取聚类结果。随后采用4种模糊聚类有效性评价算法依次对不同聚类数下的聚类结果进行聚类分析,最终通过不同聚类评价结果的对比分析得到实验数据的最佳聚类数。自测数据集的相关实验结果表明,不同的聚类有效性评价算法具有不同的优缺点,选择合适的聚类评价算法能够有效地解决最佳聚类数的确定问题,并能够有效提高实测数据的聚类识别率。
Abstract:
 As the optimal clustering number has great importance in improving the performance of clustering algorithm and expanding the algorithm’s application area,in order to solve the problem of the determination of the optimal clustering number for clustering algorithms effectively and settle the problem that the traditional clustering algorithm often requires prespecified number of clustering,a novel semi-supervised fuzzy clustering algorithm with feature discrimination ( SFFD) is proposed. Firstly,it is used to obtain the clustering result of the measured data,and then four kinds of fuzzy clustering validity evaluation algorithm are adopted for clustering analysis under different clustering number. Finally,by the comparative analysis of various validity evaluation algorithm with experimental data the optimal cluste-ring number was obtained. The experiment based on self-test datasets shows that various clustering validity evaluation algorithm has both the advantages and disadvantages,making a good choice for the clustering validity evaluation algorithm can effectively handle the problem of the determination of the optimal clustering number and enhance the recognition rate effectively for the measured data.

相似文献/References:

[1]孔祥鹏,沙宁,邢薇.基于核聚类的H.264压缩域的运动对象分割方法[J].计算机技术与发展,2013,(08):87.
 KONG Xiang-peng,SHA Ning,XING Wei.A Moving Object Extraction Method in H. 264 Compressed Domain Based on Kernel Clustering[J].,2013,(06):87.
[2]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(06):1.
[3]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(06):5.
[4]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(06):13.
[5]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(06):21.
[6]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(06):25.
[7]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(06):29.
[8]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(06):34.
[9]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(06):38.
[10]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(06):43.

更新日期/Last Update: 2016-09-20