[1]王巍,燕雪峰. 基于面向对象贝叶斯网络的威胁评估模型[J].计算机技术与发展,2016,26(05):7-11.
 WANG Wei,YAN Xue-feng. Threat Source Comprehensive Evaluation Model Based on Object-oriented Bayesian Networks[J].,2016,26(05):7-11.
点击复制

 基于面向对象贝叶斯网络的威胁评估模型()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年05期
页码:
7-11
栏目:
智能、算法、系统工程
出版日期:
2016-05-10

文章信息/Info

Title:
 Threat Source Comprehensive Evaluation Model Based on Object-oriented Bayesian Networks
文章编号:
1673-629X(2016)05-0007-05
作者:
 王巍燕雪峰
 南京航空航天大学 计算机科学与技术学院
Author(s):
 WANG WeiYAN Xue-feng
关键词:
 威胁评估面向对象贝叶斯网络消元推理信息融合
Keywords:
 threat assessmentobject-oriented Bayesian networksvariable elimination reasoninginformation fusion
分类号:
TP311
文献标志码:
A
摘要:
 针对复杂环境下威胁源种类数量繁多、建模难度大以及可维护性差等问题,文中提出一种基于面向对象贝叶斯网络的多威胁源综合评估模型及分类融合方法,并针对该模型的特点提出了单威胁源的层次消元推理算法.各类威胁源采用统一的贝叶斯网络顶层评估类设计,为评估提供了统一的标准接口及框架.融合算法根据同类和不同类威胁源的特点,分别使用S型曲线和考虑可控程度的加权融合.同时,针对单威胁源评估模型中输入输出节点确定的特点,将单威胁源评估模型转换为层次结构,按自底向上的顺序进行消元推理.实验结果表明,该模型能在复杂环境下对多威胁源进行有效的综合评估.
Abstract:
 Aiming at problems of massive threat source type,hard modeling and poor maintainability,a threat source comprehensive evalu-ation model is put forward based on object-oriented Bayesian network,and a level elimination reasoning algorithm of single threat source is proposed according to the characteristics of the model. A unified standard interface and framework is presented by the designing of top class of evaluation. Based on the characteristics of the similar and different threat source,respectively,fuse algorithm uses the S type curve and considers controllable degree of weighted fusion. At the same time,in view of characteristics determined by input and output node in the assessment model of single source threat,which is converted into a hierarchical structure,according to the order of bottom-up for elimination reasoning. Experiment shows that this model can be effective comprehensive evaluation for the multi-threat source in the complex environment.

相似文献/References:

[1]谢振国 凌捷.网络安全预警系统的研究[J].计算机技术与发展,2011,(11):250.
 XIE Zhen-guo,LING Jie.Study of a Network Security and Early-Warning System[J].,2011,(05):250.
[2]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(05):1.
[3]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(05):5.
[4]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(05):13.
[5]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(05):21.
[6]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(05):25.
[7]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(05):29.
[8]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(05):34.
[9]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(05):38.
[10]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(05):43.
[11]王巍. 基于云参数贝叶斯网络的威胁评估方法[J].计算机技术与发展,2016,26(06):106.
 WANG Wei. An Threat Assessment Method Based on Cloud Parameters Bayesian Network[J].,2016,26(05):106.

更新日期/Last Update: 2016-09-19