[1]张志远,徐恒盼. 一种基于倒排索引的多维网络存储模型[J].计算机技术与发展,2016,26(04):25-30.
 ZHANG Zhi-yuan,XU Heng-pan. A Multi-dimensional Network Storage Model Based on Inverted Index[J].,2016,26(04):25-30.
点击复制

 一种基于倒排索引的多维网络存储模型()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年04期
页码:
25-30
栏目:
智能、算法、系统工程
出版日期:
2016-04-10

文章信息/Info

Title:
 A Multi-dimensional Network Storage Model Based on Inverted Index
文章编号:
1673-629X(2016)04-0025-06
作者:
 张志远徐恒盼
 中国民航大学 计算机科学与技术学院
Author(s):
 ZHANG Zhi-yuanXU Heng-pan
关键词:
 多维网络图立方体倒排索引联机分析处理
Keywords:
 multi-dimensional networkgraph cubeinverted indexOLAP
分类号:
TP391.9
文献标志码:
A
摘要:
 具有多维属性的实体相互连接构成的网络(如社交网络)称为多维网络,在多维网络上支持联机分析处理具有重要的应用价值。现有方法大都从文件或数据库中逐条读取记录,当数据量很大时,需要多次读取磁盘,导致查询响应时间过长,效率较低。文中提出了一种新的基于倒排索引的多维网络存储模型II-GC(Inverted Index based Graph Cube),通过将图的拓扑结构和顶点的多维属性存储在倒排索引列表中加快查询速度,并给出了在多维网络上进行聚集查询( cuboid)和交叉查询( crossboid)的算法。在DBLP数据集上的实验表明,该模型较GraphCube的查询效率更高,扩展性更好。
Abstract:
 A network such as social network linked by entities with multiple attributes is called multi-dimensional network. OLAP query on multi-dimensional network has an important application value. Most existing methods read records one by one from a file or a data-base. When a lot of data involved,these methods need more I/O time,thus leading to large query response time and low query efficiency. A new multi-dimensional network storage model based on inverted index is presented, called II-GC ( Inverted Index based Graph Cube) . It speeds up the process by constructing inverted index both on topological graph and multiple attributes. Algorithms about cuboid and crossboid are also introduced. Experimental results on DBLP show that this model is more efficient and scalable than GraphCube.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(04):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(04):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(04):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(04):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(04):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(04):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(04):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(04):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(04):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(04):47.

更新日期/Last Update: 2016-06-16