[1]戴琼,周明全,付倩. 小篆文字的自动识别[J].计算机技术与发展,2016,26(03):1-4.
 DAI Qiong,ZHOU Ming-quan,FU Qian. Automatic Recognition of Xiaozhuan Fonts[J].,2016,26(03):1-4.
点击复制

 小篆文字的自动识别()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年03期
页码:
1-4
栏目:
智能、算法、系统工程
出版日期:
2016-03-10

文章信息/Info

Title:
 Automatic Recognition of Xiaozhuan Fonts
文章编号:
1673-629X(2016)03-0001-04
作者:
 戴琼周明全付倩
 北京师范大学 信息科学与技术学院
Author(s):
 DAI QiongZHOU Ming-quanFU Qian
关键词:
 小篆字体ICP算法相似度自动识别
Keywords:
 Xiaozhuan fontsICPsimilarityautomatic recognition
分类号:
TP301
文献标志码:
A
摘要:
 小篆是秦统一后使用的文字,是汉字发展的一个重大里程碑。在书法、碑文、石刻等有大量存在。但是由于与现代汉字差异较大,大多数人无法辨识这些小篆文字。文中提出了一种利用计算机对小篆文字自动辨识的方法。首先构建标准以及小篆字体数据库,然后将用户需要识别的小篆文字图片缩放至标准大小,随后采用迭代最近点算法( ICP算法)与库中的小篆文字进行匹配,最后计算其相似度,而得到的相似度最高文字,也就是识别的输出结果,从而实现小篆字体的自动识别。该方法经过大量实验证明是有效的。
Abstract:
 Xiaozhuan is the language used Qin unified China,and is a major milestone in the development of Chinese characters. In calli-graphy,inscriptions,stone carvings,it is abound. However,due to large differences with the modern Chinese characters,most people can-not recognize these Xiaozhuan text. An automatic identification method of Xiaozhuan text by using computer technology is presented. First,the standard and database for Xiaozhuan font is built. Secondly,the Xiaozhuan text image which users want to identify is scaled to the standard size,and then the image is matched with these characters in the standard database of Xiaozhuan font by iterative closest point algorithm ( ICP algorithm) . Finally,the similarity is computed and the highest similarity ward is selected,that is the output result of rec-ognition. Therefore automatic recognition of Xiaozhuan font is achieved. A lot of experiments have shown this method is effective.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(03):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(03):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(03):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(03):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(03):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(03):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(03):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(03):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(03):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(03):47.

更新日期/Last Update: 2016-05-24