[1]胡皞,常军,巩文龙,等. 基于混合概率的新型小波变异量子粒子群算法[J].计算机技术与发展,2016,26(01):78-81.
 HU Hao,CHANG Jun,GONG Wen-long,et al. A New Particle Swarm Optimization Algorithm of Wavelet Mutation Quantum-behaved Based on Mixed-probability[J].,2016,26(01):78-81.
点击复制

 基于混合概率的新型小波变异量子粒子群算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年01期
页码:
78-81
栏目:
安全与防范
出版日期:
2016-01-10

文章信息/Info

Title:
 A New Particle Swarm Optimization Algorithm of Wavelet Mutation Quantum-behaved Based on Mixed-probability
文章编号:
1673-629X(2016)01-0078-04
作者:
 胡皞常军巩文龙刘文波
 苏州科技学院
Author(s):
 HU HaoCHANG JunGONG Wen-longLIU Wen-bo
关键词:
 量子粒子群算法混合概率小波局部最优全局最优
Keywords:
 quantum-behaved particle swarm optimizationmixed probabilitywavelet local optimizationglobal optimization
分类号:
TP301
文献标志码:
A
摘要:
 量子粒子群算法(QPSO)具有全局寻优能力不强,且容易陷入局部最优的缺陷,因此,针对这个问题,提出了一种基于混合概率的新型小波变异量子粒子群(M-WMQPSO)算法的改进算法。该算法首先在粒子进化方程中引入高斯分布,采用混合概率分布进化方程取代标准 QPSO 进化方程,以此来提高算法的寻优能力。接着,为了更好地提高算法的全局寻优能力,改善算法容易陷入局部最优的缺陷,在粒子进化过程中以一定的概率对粒子进行新型小波变异处理,增加粒子种群的多样性,避免了粒子在寻优过程中陷入局部最优,从而实现算法全局寻优的目的。最后,采用六个典型测试函数对该改进算法的性能进行验证。测试结果表明,改进算法的寻优能力和避免局部最优能力都有很大提高。
Abstract:
 Quantum-behaved Particle Swarm Optimization (QPSO) algorithm has defects that the capability of global optimization is not strong and is easy to fall into the local optimum. To solve this problem,an improved quantum-behaved particle swarm optimization is presented by introducing Gaussian distribution into the evolution equation,and the evolution equation of QPSO is substituted by mixed probability distribution evolution equation,and some particles were mutated in a definite probability by wavelet during evolution to in-crease the diversity of the particle population,avoiding the optimization process into local optimization,and improve the capability of global optimization. Finally,six typical test functions are employed to verify the improved method. The results show that the optimization capability and the ability to avoid local optimum of improved algorithm have been improved effectively.

相似文献/References:

[1]徐迪 刘瑞兰.基于QPSO算法的无线传感器定位研究[J].计算机技术与发展,2012,(02):41.
 XU Di,LIU Rui-lan.Wireless Sensor Networks Location Study Based on QPSO[J].,2012,(01):41.
[2]邓宗强,曾碧卿.一种新参数优化算法及其在流量预测中的应用[J].计算机技术与发展,2013,(10):36.
 DENG Zong-qiang[],ZENG Bi-qing[].A New Parameter Optimization Algorithm and Its Application in Traffic Prediction[J].,2013,(01):36.
[3]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(01):1.
[4]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(01):5.
[5]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(01):13.
[6]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(01):21.
[7]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(01):25.
[8]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(01):29.
[9]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(01):34.
[10]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(01):38.

更新日期/Last Update: 2016-04-12