[1]胡存刚,程莹. 基于粒子群算法的大数据智能搜索引擎的研究[J].计算机技术与发展,2015,25(12):14-17.
 HU Cun-gang,CHENG Ying. Research on Big Data Intelligent Search Engine Based on PSO[J].,2015,25(12):14-17.
点击复制

 基于粒子群算法的大数据智能搜索引擎的研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年12期
页码:
14-17
栏目:
智能、算法、系统工程
出版日期:
2015-12-10

文章信息/Info

Title:
 Research on Big Data Intelligent Search Engine Based on PSO
文章编号:
1673-629X(2015)12-0014-04
作者:
 胡存刚程莹
 安徽大学
Author(s):
 HU Cun-gangCHENG Ying
关键词:
 大数据粒子群算法数据管理平台智能搜索引擎
Keywords:
 big dataparticle swarm optimizationdata management platformintelligent search engine
分类号:
TP31
文献标志码:
A
摘要:
 在开发公安机关大数据管理平台的基础上,对基于粒子群算法的智能搜索引擎进行了研究,有效地解决了目前搜索引擎不能很好地为用户提供感兴趣信息的问题且提高了搜索效率. 大数据管理平台采用倒排序分割存储方法,显著提高了分割效率. 为了避免客户端同服务器的大量数据交互,造成网络的堵塞,文中项目创新性地采用了数据同步技术,即对客户端数据库与服务器数据库的数据进行一致性更新. 建立客户端数据库,实现客户端文件树的生成. 大幅降低了客户端与服务器交互的数据量. 针对公安机关大数据的特点,将粒子群算法引入智能搜索引擎中,以实现公安大数据的关联搜索. 最后研发了一套公安机关大数据管理平台和智能搜索引擎,通过实验验证了搜索结果的正确率以及满意度.
Abstract:
 In big data management platform of public security organ,an intelligent search engine based on PSO ( Particle Swarm Optimi-zation) algorithm is studied,which solves the current search engines’ problem that cannot be very good for users to find their interested information and improves the search efficiency. Inverted sequence file segmentation storage method is adopted in big data management platform,significantly improving the efficiency of segmentation. In order to avoid a large number of data interaction between the client and the server,resulting in network congestion,use innovative data synchronization technology. The establishment of client database,gen-erate the client file tree,significantly reducing the amount of data communication between client and server. According to the characteris-tics of public security organ’s big data,the PSO algorithm is introduced to intelligent search engine. Finally,develop a big data manage-ment platform and intelligent search engine for the public security organs. And through experiments verify the accuracy of search results and satisfaction of users.

相似文献/References:

[1]严霄凤,张德馨.大数据研究[J].计算机技术与发展,2013,(04):168.
 YAN Xiao-feng,ZHANG De-xin.Big Data Research[J].,2013,(12):168.
[2]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(12):1.
[3]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(12):5.
[4]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(12):13.
[5]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(12):21.
[6]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(12):25.
[7]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(12):29.
[8]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(12):34.
[9]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(12):38.
[10]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(12):43.
[11]王雷,陈彦先,袁哲,等. 面向预拌混凝土行业的云计算[J].计算机技术与发展,2014,24(08):14.
 WANG Lei,CHEN Yan-xian,YUAN Zhe JI Xu. Research on Cloud Computing for Ready-mixed Concrete Industry[J].,2014,24(12):14.
[12]金宗泽,冯亚丽,文必龙,等. 大数据分析流程框架的研究[J].计算机技术与发展,2014,24(08):117.
 JIN Zong-ze,FENG Ya-l,WEN Bi-long,et al. Research on Framework of Big Data Analytic Process[J].,2014,24(12):117.
[13]张也弛,周文钦,石润华. 一种面向云的大数据完整性检测协议[J].计算机技术与发展,2014,24(09):68.
 ZHANG Ye-chi,ZHOU Wen-qin,SHI Run-hua. A Big Data Integrity Checking Protocol for Cloud[J].,2014,24(12):68.
[14]谢怡,王航,刘新瀚,等. 大数据环境下数据读取关键技术研究[J].计算机技术与发展,2015,25(02):113.
 XIE Yi,WANG Hang,LIU Xin-han,et al. Research on Data Reading Techniques Based on Big Data Environment[J].,2015,25(12):113.
[15]付燕平,罗明宇,刘其军. 大数据三维模型快速显示技术研究[J].计算机技术与发展,2015,25(05):87.
 FU Yan-ping,LUO Ming-yu,LIU Qi-jun. Research on Fast Display Technology for Big Data Three-dimensional Model[J].,2015,25(12):87.
[16]赵震,任永昌. 大数据时代基于云计算的电子政务平台研究[J].计算机技术与发展,2015,25(10):145.
 ZHAO Zhen,REN Yong-chang. Research on E-government Platform Based on Cloud Computing in Big Data Era[J].,2015,25(12):145.
[17]肖洁,袁嵩,谭天. 大数据时代数据隐私安全研究[J].计算机技术与发展,2016,26(05):91.
 XIAO Jie,YUAN Song,TAN Tian. Research on Data Privacy in Big Data Age[J].,2016,26(12):91.
[18]郭先超,林宗缪,姚文勇. 互联网+质量检测平台设计[J].计算机技术与发展,2016,26(05):120.
 GUO Xian-chao,LIN Zong-miao,YAO Wen-yong. Design of Platform for Internet+ Quality Inspection[J].,2016,26(12):120.
[19]程艳云,张守超,杨杨. 基于大数据的时间序列异常点检测研究[J].计算机技术与发展,2016,26(05):139.
 CHENG Yan-yun,ZHANG Shou-chao,YANG Yang. Research on Time Series Outlier Detection Based on Big Data[J].,2016,26(12):139.
[20]程艳云,张守超,杨杨. 基于大数据的时间序列预测研究与应用[J].计算机技术与发展,2016,26(06):175.
 CHENG Yan-yun,ZHANG Shou-chao,YANG Yang. Research and Application of Time Series Forecasting Based on Big Data[J].,2016,26(12):175.

更新日期/Last Update: 2016-01-26