[1]李继楼,柯家龙. 基于压缩感知的WSN数据压缩与重构[J].计算机技术与发展,2015,25(09):111-114.
 LI Ji-lou,KE Jia-long. Data Compression and Recovery of WSN Based on Compressive Sensing[J].,2015,25(09):111-114.
点击复制

 基于压缩感知的WSN数据压缩与重构()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年09期
页码:
111-114
栏目:
智能、算法、系统工程
出版日期:
2015-09-10

文章信息/Info

Title:
 Data Compression and Recovery of WSN Based on Compressive Sensing
文章编号:
1673-629X(2015)09-0111-04
作者:
 李继楼柯家龙
 南京邮电大学 通信与信息工程学院
Author(s):
 LI Ji-louKE Jia-long
关键词:
 无线传感网络压缩感知贝叶斯模型信号重构
Keywords:
 wireless sensor networkscompressive sensingBayesian modelsignal reconstruction
分类号:
TP301
文献标志码:
A
摘要:
 在无线传感器网络( WSN)中,传统的处理方式是采用奈奎斯特技术对信号进行采样并重构,而随着信号频率的增加,应用奈奎斯特技术会使成本急剧增加,这是人们所不乐见的。针对这一问题,近年来出现一种新的技术即压缩感知技术,它能利用更少的数据和合适的重构方法得到更精确的原始信号。将稀疏贝叶斯学习( SBL)和压缩感知联合起来,形成了一种在噪声的情况下更好重建可压缩信号的方法,并进一步将这种方法应用在WSN中,可以在误差允许的范围内有效控制测量数据的维数,所以在保证了一定的误差的同时还减少了成本,提高了算法的效率。
Abstract:
 In wireless sensor networks,signal is sampled and reconstructed using the technology of Nyquist in the past. But it requires a substantial increase in the cost with the growth of the signal frequency,which is that people do not like to see. Recently a new technology is emerged,which is called compressive sensing technology,is a good way to solve this problem. Compressive sensing can use less data and appropriate reconstruction method to get a more accurate original signal. Put Sparse Bayesian Learning ( SBL) and compressive sens-ing together to form a better reconstruction compressible signal under the noise. This method can effectively control the dimension of measurement data within the range of allowed error in WSN,so you can ensure a certain degree of error while reducing the cost,impro-ving the efficiency of the algorithm.

相似文献/References:

[1]段军,张清磊.蚁群算法在LEACH路由协议中的应用[J].计算机技术与发展,2014,24(01):65.
 DUAN Jun,ZHANG Qing-lei.Application of Ant Colony Algorithm Based on LEACH Routing Protocol[J].,2014,24(09):65.
[2]吴征 朱军 韩永远.一种新的基于LEACH的WSN分簇协议[J].计算机技术与发展,2010,(05):29.
 WU Zheng,ZHU Jun,HAN Yong-yuan.A New LEACH-Based Clustering Protocol for Wireless Sensor Networks[J].,2010,(09):29.
[3]刘子京 裴文江.基于ZigBee协议的无线传感器网络研究[J].计算机技术与发展,2009,(05):192.
 LIU Zi-jing,PEI Wen-jiang.Research of Wireless Sensor Network Based on ZigBee Protocol[J].,2009,(09):192.
[4]潘伟 黄东.基于Zigbee技术的无线传感网络研究[J].计算机技术与发展,2008,(09):244.
 PAN Wei,HUANG Dong.Research of Wireless Sensor Network Based on Zigbee[J].,2008,(09):244.
[5]张宇晴 郑小建 胡旦华.无线传感网络中基于Agent的高效路由算法的研究[J].计算机技术与发展,2007,(09):120.
 ZHANG Yu-qing,ZHENG Xiao-jian,HU Dan-hua.Agent- Based Efficient Routing Algorithm in Wireless Sensor Networks[J].,2007,(09):120.
[6]蔡文郁,苏晨.一种无线浮标传感器网络覆盖优化算法的研究[J].计算机技术与发展,2013,(12):219.
 CAI Wen-yu,SU Chen.Study on Coverage Optimization Algorithm for Wireless Buoy Sensor Networks[J].,2013,(09):219.
[7]吴杰,冯锋.基于WSN的精准养牛业智能决策支持系统设计[J].计算机技术与发展,2014,24(01):250.
 WU Jie,FENG Feng.Design of Precision Cattle Industry Intelligent Decision Support System Based on WSN[J].,2014,24(09):250.
[8]徐阳,陈华.一种支持多分辨率查询的数据存储策略[J].计算机技术与发展,2014,24(02):123.
 XU Yang[],CHEN Hua[].A Data Storage Strategy for Multi-resolution Query[J].,2014,24(09):123.
[9]李燕,王博.基于压缩感知的数据压缩与检测[J].计算机技术与发展,2014,24(03):198.
 LI Yan,WANG Bo.Data Compression and Detection Based on Compressive Sensing[J].,2014,24(09):198.
[10]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(09):1.
[11]郁美芬,吴蒙. WSN中基于网络编码的最小广播重传算法[J].计算机技术与发展,2014,24(09):125.
 YU Mei-fen,WU Meng. Minimum Broadcasting Retransmission Algorithm Based on Network Coding in WSN[J].,2014,24(09):125.

更新日期/Last Update: 2015-10-16