[1]裴向杰,唐红昇,陈鹏. 一种改进的贝叶斯算法在短信过滤中的研究[J].计算机技术与发展,2015,25(09):89-93.
 PEI Xiang-jie,TANG Hong-sheng,CHEN Peng. Research on Optimized Naive Bayesian Algorithm in SMS Spam Filtering[J].,2015,25(09):89-93.
点击复制

 一种改进的贝叶斯算法在短信过滤中的研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年09期
页码:
89-93
栏目:
智能、算法、系统工程
出版日期:
2015-09-10

文章信息/Info

Title:
 Research on Optimized Naive Bayesian Algorithm in SMS Spam Filtering
文章编号:
1673-629X(2015)09-0089-05
作者:
 裴向杰唐红昇陈鹏
 江苏省气象局 江苏省气象信息中心
Author(s):
 PEI Xiang-jieTANG Hong-shengCHEN Peng
关键词:
 贝叶斯最小风险文本分类短信过滤
Keywords:
 Bayesminimum risktext classificationmessage filtering
分类号:
TP301.6
文献标志码:
A
摘要:
 随着信息交流的频繁性,各种骚扰和垃圾短信充斥手机,严重干扰了人们的正常生活。针对垃圾短信过滤技术,研究基于最小风险决策贝叶斯的文本分类器构造方法以及实现。对于朴素贝叶斯在短信过滤系统中过分依赖样本空间的分布和内在的不稳定性,造成了时间复杂度的增加,提出了一种基于改进贝叶斯的垃圾短信文本分类器构造方法。主要利用最小风险决策算法结合贝叶斯理论完成对批量短信的训练,形成对应的集合模型。对实现文本分类的关键技术做了重点叙述,并对文本分类算法进行了实现。最后对算法进行测试,结果表明:基于最小风险决策贝叶斯的文本分类器不仅训练简单,而且分类准确度高,解决了朴素贝叶斯算法的不稳定性,为短信过滤技术提供了借鉴。
Abstract:
 With frequent exchanges of information,various harassing messages with mobile phone disturb the normal life for people. For spam filtering technology,research the constructing method and its realization for text classifier based on optimized Na?ve Bayesian algo-rithm. The distribution of Naive Bayesian over-reliance on sample space in the short message filtering system and the inherent instability cause an increase in time complexity,propose a spam message structure text classifier based on the improved Bayesian method. The meth-od uses the Bayesian theory and minimum risk decision algorithm to complete the training of bulk SMS. Describe the key technologies of text classification and implement the text classification algorithm. The test results show that the new algorithm can easily train and im-prove the classification accuracy,solving the instability of Na?ve Bayesian algorithm,which provides a reference for filtering technology.

相似文献/References:

[1]王军豪 彭岩.基于主观贝叶斯的点击流数据分析应用研究[J].计算机技术与发展,2008,(07):116.
 WANG Jun-hao,PENG Yan.Application and Research of Clickstream Data Analysis Based on Bayes[J].,2008,(09):116.
[2]王娟 柴玉梅.基于多议题协商的贝叶斯学习[J].计算机技术与发展,2006,(02):154.
 WANG Juan,CHAI Yu-mei.A Bayesian Learning Based on Multi- Issues Negotiation[J].,2006,(09):154.
[3]高志森 张铮 李俊.入侵检测中贝叶斯分类器改进的研究[J].计算机技术与发展,2006,(11):154.
 GAO Zhi-sen,ZHANG Zheng,LI Jun.Improved Bayesian Classifier of Intrusion Detection[J].,2006,(09):154.
[4]江欢 汤进 郭玉堂 罗斌.基于t混合模型的自动图像标注[J].计算机技术与发展,2010,(10):86.
 JIANG Huan,TANG Jin,GUO Yu-tang,et al.Automatic Image Annotation Based on t Mixture Model[J].,2010,(09):86.
[5]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(09):1.
[6]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(09):5.
[7]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(09):13.
[8]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(09):21.
[9]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(09):25.
[10]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(09):29.
[11]曾永忠[] []张帅[] 马忠权[]. 一种基于用户会话的异常检测方法[J].计算机技术与发展,2014,24(07):141.
 ZENG Yong-zhong[][],ZHANG Shuai[] A Zhong-quan[]. An Anomaly Detection Method Based on Session[J].,2014,24(09):141.
[12]王有远[],张乐恩[]. 基于情境感知的设计资源服务需求获取研究[J].计算机技术与发展,2017,27(05):10.
 WANG You-yuan[],ZHANG Le-en[]. Investigation on Acquisition of Designing Resources ServiceRequirements with Context Awareness[J].,2017,27(09):10.

更新日期/Last Update: 2015-10-16