[1]邵曦,郁青玲. 基于典型相关的音乐跨模态检索[J].计算机技术与发展,2015,25(07):76-81.
 SHAO Xi,YU Qing-ling. Cross-modal Music Retrieval Based on Canonical Correlation[J].,2015,25(07):76-81.
点击复制

 基于典型相关的音乐跨模态检索()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年07期
页码:
76-81
栏目:
智能、算法、系统工程
出版日期:
2015-07-10

文章信息/Info

Title:
 Cross-modal Music Retrieval Based on Canonical Correlation
文章编号:
1673-629X(2015)07-0076-06
作者:
 邵曦郁青玲
 南京邮电大学 通信与信息工程学院
Author(s):
 SHAO XiYU Qing-ling
关键词:
 典型相关性跨模态检索异构性子空间映射权重分配
Keywords:
 canonical correlationcross-modal retrievalheterogeneoussubspace mappingweight allocation
分类号:
TP31
文献标志码:
A
摘要:
 针对现有的音乐检索研究大多集中在对单一模态的数据查询的现状,文中提出了一种基于典型相关的跨模态音乐检索方法。首先分析了文本特征和音乐内容特征潜在的统计关系,通过子空间映射解决了不同模态之间的特征异构问题,再根据欧氏距离的大小衡量两者的相关性,从而实现了音乐跨模态检索,并且引入查询相关的概念通过权重分配优化了检索结果,进一步提高了检索准确率。文中选取了Rock、emotion、jazz、folk、dancing5种音乐风格语义的文本-音频作为实验数据库,结果表明文中提出的跨模态音乐检索方法能取得较好的效果。
Abstract:
 Existing music retrieval methods are mostly designed for data of single modality. Aiming at this situation,propose a cross-mo-dal music retrieval approach based on canonical correlation. First,the underlying statistical relationship is analyzed between the text fea-tures and music content features,then subspace mapping is used to solve the heterogeneous problem between different feature vectors,at last Euclidean distance can be employed to measure the cross-media similarity,in order to further improve the retrieval accuracy,and weight allocation is used to optimize search results by introducing the concept of query correlated. The experimental results show that the proposed method in this paper can get a better result in music retrieval.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(07):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(07):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(07):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(07):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(07):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(07):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(07):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(07):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(07):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(07):47.

更新日期/Last Update: 2015-09-07