[1]路阔,钟伯成. 基于LMBP神经网络的建筑能耗预测[J].计算机技术与发展,2015,25(06):216-218.
 LU Kuo,ZHONG Bo-cheng. Building Energy Consumption Prediction Based on LMBP Neural Network[J].,2015,25(06):216-218.
点击复制

 基于LMBP神经网络的建筑能耗预测()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年06期
页码:
216-218
栏目:
应用开发研究
出版日期:
2015-06-10

文章信息/Info

Title:
 Building Energy Consumption Prediction Based on LMBP Neural Network
文章编号:
1673-629X(2015)06-0216-03
作者:
 路阔钟伯成
 上海工程技术大学 电子电气工程学院
Author(s):
 LU KuoZHONG Bo-cheng
关键词:
 建筑能耗数据采集短期预测神经网络BP算法LM算法
Keywords:
 building energy consumptiondata acquisitionshort-term predictionneural networkBack Propagation algorithmLevenberg-Marquardts algorithm
分类号:
TP391.9
文献标志码:
A
摘要:
 建筑能耗短期预测对实时性要求较高,传统神经网络存在收敛速度慢的缺点。为此,采用LM算法改进标准BP神经网络,建立了基于LM算法的建筑能耗预测模型。首先通过理论说明该算法的先进性,然后设计一套建筑能耗数据采集系统和建立基于LMBP神经网络的建筑能耗预测模型,最后采集某建筑一个月的整点电量作为预测模型的实验数据。实验结果表明,该模型明显提高了训练速度,且预测精度满足实际需求,说明了LMBP神经网络适用于建筑能耗短期预测。
Abstract:
 The traditional neural network is too slow in term of convergence speed to meet the high real-time requirements of short-term prediction of building energy consumption. Therefore, LM algorithm is adopted instead of conventional BP algorithm to establish the building energy consumption model. Firstly through theoretical description of the advanced algorithm,then design a set of data acquisition system to monitor building energy consumption and set up the prediction model based on LMBP neural network. Finally a building’ s 24-hour power consumption data for one month is collected by the data acquisition system as the experimental samples to verify the model. Empirical results show that the LMBP neural network prediction model significantly improves the training speed,precisely enough to meet the actual demand. Thus,the model is adequate for short-term prediction of building energy consumption.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(06):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(06):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(06):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(06):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(06):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(06):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(06):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(06):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(06):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(06):47.
[11]孙薇[],于凤芹[],钦道理[]. 基于WMMP-T协议的建筑能耗数据采集网关的设计[J].计算机技术与发展,2015,25(03):202.
 SUN Wei[],YU Feng-qin[],QIN Dao-li[]. Design of Building Energy Consumption Data Acquisition Gateway Based on WMMP-T[J].,2015,25(06):202.
[12]吕丁浩,钟伯成,雒静. 信息融合及其在建筑节能中的应用[J].计算机技术与发展,2015,25(04):134.
 Lü Ding-hao,ZHONG Bo-cheng,LUO Jing. Information Fusion and Its Application in Building Energy[J].,2015,25(06):134.
[13]王飞,张腾飞,李钦晓. 基于WSN的建筑电气设备能耗远程监控系统[J].计算机技术与发展,2016,26(05):115.
 WANG Fei,ZHANG Teng-fei,LI Qin-xiao. Remote Monitoring System for Energy Consumption of Building Electrical Equipment Based on WSN[J].,2016,26(06):115.

更新日期/Last Update: 2015-08-05