[1]张方舟,张媛媛,金宗泽,等. 基于NNFR神经模糊推理的储层参数识别与评价[J].计算机技术与发展,2015,25(06):211-215.
 ZHANG Fang-zhou,ZHANG Yuan-yuan,JIN Zong-ze,et al. Fuzzy Inference Reservoir Parameter Identification and Evaluation Based on NNFR[J].,2015,25(06):211-215.
点击复制

 基于NNFR神经模糊推理的储层参数识别与评价()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年06期
页码:
211-215
栏目:
应用开发研究
出版日期:
2015-06-10

文章信息/Info

Title:
 Fuzzy Inference Reservoir Parameter Identification and Evaluation Based on NNFR
文章编号:
1673-629X(2015)06-0211-05
作者:
 张方舟张媛媛金宗泽邱露露宋经纬
 东北石油大学 计算机与信息技术学院
Author(s):
 ZHANG Fang-zhouZHANG Yuan-yuanJIN Zong-zeQIU Lu-luSONG Jing-wei
关键词:
 数据归一化神经网络模糊推理储层预测
Keywords:
 data normalizationneural networkfuzzy inferencereservoir prediction
分类号:
TP389.1
文献标志码:
A
摘要:
 随着勘探技术的不断发展,研究的不断深入,对油气层预测的精度越来越高。为了提高参数识别的精度,同时,为了应用地化数据实现储层的参数识别与评价,文中通过引入数据归一化算法来克服各方面因素对预测结果的干扰,并借助基于NNFR的神经模糊推理来帮助实现参数的识别与评价。通过建立参数预测的分析步骤方法最终完成对储层参数的识别。并为验证理论模型的正确性,通过对7口井12个试油井的井段数据井进行测试与验证,证实了该方法的可行性。
Abstract:
 With the continuous development of exploration technology and research is studied deeply,the hydrocarbon reservoir prediction accuracy is higher and higher. In order to improve the precision of parameter identification,at the same time,apply geochemical data to a-chieve the parameters identification and evaluation of reservoir,by the introduction of data normalization algorithm,overcome the various interferences on the prediction results,and by means of NNFR to identify and evaluate the parameters. By establishing the procedure of analyzing method,it recognizes the reservoir parameters. In order to verify the correctness of the theory and model,it tests the data units of 12 test wells in 7 wells,which proves the feasibility of the method.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(06):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(06):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(06):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(06):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(06):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(06):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(06):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(06):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(06):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(06):47.
[11]刘华蓥,孙春雨,张方舟,等. 基于粗集理论的气测录井数据归一化处理[J].计算机技术与发展,2015,25(07):189.
 LIU Hua-ying,SUN Chun-yu,ZHANG Fang-zhou,et al. Gas Logging Data Normalization Processing Based on Rough Set Theory[J].,2015,25(06):189.

更新日期/Last Update: 2015-08-05