[1]邹晶,李雷. 基于逼近的动态面滑膜智能控制算法的研究[J].计算机技术与发展,2015,25(06):6-11.
 ZOU Jing,LI Lei. Research on Dynamic Surface Sliding Mode Intelligent Control Algorithm Based on Approximation[J].,2015,25(06):6-11.
点击复制

 基于逼近的动态面滑膜智能控制算法的研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年06期
页码:
6-11
栏目:
智能、算法、系统工程
出版日期:
2015-06-10

文章信息/Info

Title:
 Research on Dynamic Surface Sliding Mode Intelligent Control Algorithm Based on Approximation
文章编号:
1673-629X(2015)06-0001-04
作者:
 邹晶李雷
 南京邮电大学 自动化学院
Author(s):
 ZOU JingLI Lei
关键词:
 自适应控制反推设计动态面滑模控制模糊神经网络非线性时滞系统
Keywords:
 adaptive control backstepping designDynamic Surface Sliding Mode Control ( DSSMC) fuzzy neural network nonlinear time-delay systems
分类号:
TP301.6
文献标志码:
A
摘要:
 文中研究的是自适应模糊神经网络( FNN)在一类带有未知延时函数和不确定干扰的非仿射纯反馈系统中的控制问题。首先采用动态表面控制( DSC)技术避免反演设计存在的“微分爆炸”问题,同时为了克服干扰,保证鲁棒性,引入滑模控制来改进DSC方法。然后直接利用模糊神经网络近似未知函数,并利用Lyapunov-KrasovsKii泛函,双曲正切函数的特性以及函数分离技术去克服未知时间延迟函数问题。该算法只需少量的自适应参数,就能保证闭环系统中的所有信号半全局一致最终有界。仿真结果表明,在存在干扰和时滞的情况下,该控制器具有良好的实时性和稳定性。
Abstract:
 In this paper,consider the problem of adaptive Fuzzy Neural Network ( FNN) control for a class of nonaffine pure-feedback systems with unknown time-delay functions and perturbed uncertainties. Dynamic Surface Control ( DSC) technique is used to avoid the“explosion of complexity” problem. To overcome the interference and ensure the robustness, modify the DSC approach by employing sliding mode control. The FNN is directly utilized to approximate unknown functions,and use the Lyapunov-Krasovskii functions,the de-sirable property of hyperbolic tangent functions,and the function separation technique to overcome the problem from unknown time-delay functions. The proposed algorithm just needing a small number of adaptive parameters,can guarantee all the signals in the closed-loop system to be semiglobally uniformly ultimately bounded. The simulation results illustrate that the controller has good real-time and stabili-ty under the case of interference and time-delay.

相似文献/References:

[1]吴异卉 王启志.基于LabVIEW的模型参考自适应控制的实现[J].计算机技术与发展,2008,(11):180.
 WU Yi-hui,WANG Qi-zhi.Realization of Adaptive Control Reference Model Based on LabVIEW[J].,2008,(06):180.
[2]乔海晔.基于自适应控制的车灯转动系统的设计[J].计算机技术与发展,2012,(07):245.
 QIAO Hai-ye.Light Rotation System Design Based on Adaptive Control[J].,2012,(06):245.
[3]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(06):1.
[4]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(06):5.
[5]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(06):13.
[6]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(06):21.
[7]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(06):25.
[8]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(06):29.
[9]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(06):34.
[10]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(06):38.
[11]陆兴华. 采用波束域加权的大迎角飞行姿态控制算法[J].计算机技术与发展,2017,27(01):117.
 LU Xing-hua. High Angle of Attack Flight Attitude Control Algorithm Based on Beam Domain Weighting[J].,2017,27(06):117.

更新日期/Last Update: 2015-07-27