[1]文念,黄丽亚,于涵,等. 基于ICA和聚类的EEG脑源定位研究[J].计算机技术与发展,2015,25(05):228-232.
 WEN Nian,HUANG Li-ya,YU Han,et al. EEG Sources Localization Based on Independent Component Analysis and Clustering[J].,2015,25(05):228-232.
点击复制

 基于ICA和聚类的EEG脑源定位研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年05期
页码:
228-232
栏目:
应用开发研究
出版日期:
2015-05-10

文章信息/Info

Title:
 EEG Sources Localization Based on Independent Component Analysis and Clustering
文章编号:
1673-629X(2015)05-0228-05
作者:
 文念黄丽亚于涵杨晨杨俊宇
 南京邮电大学 电子科学与工程学院
Author(s):
 WEN Nian HUANG Li-ya YU Han YANG Chen YANG Jun-yu
关键词:
 脑电独立成分分析多偶极子源定位聚类分析
Keywords:
 EEG ICA multiple-dipole localization clustering analysis
分类号:
TP301
文献标志码:
A
摘要:
 将独立成分分析(ICA)与聚类Cluster相结合应用到脑电的多偶极子源定位,先采用快速独立成分分析(fastICA)得到多个独立成分( ICs),然后通过聚类方法对得到的ICs进行特征提取和有效归类。该方法在去除脑电伪迹和噪声干扰的同时解决了ICA分解后独立成分的选取依赖于经验的局限性。以上消除了伪迹干扰和ICs的不确定性选择对源定位性能的影响,为源定位创造了有利条件。对ICs进行定位也使得整个定位过程像单偶极子定位一样稳定简单。仿真实验中源定位效果得到改善,表明了该方法的有效性。
Abstract:
 A multiple-dipole localization procedure combined Independent Component Analysis ( ICA) and cluster analysis for EEG ( e-lectroencephalograph) is suggested in this paper. Firstly,the fastICA is applied to obtain Independent Components ( ICs) which are then utilized by cluster analysis for feature extraction and effective classification. Removing the brain artifacts and noise by cluster,this ap-proach overcomes the constraint that the selection of the independent components depends on experiences. The work above eliminates the artifact and the uncertainty of ICs effects on the source localization performance,and creates favorable conditions for source localization. Locating the ICs also makes the multiple-dipole localization simple and stable as the single dipole localization. The simulation shows that the effect of the source localization has been significantly enhanced,indicating the effectiveness of this method.

相似文献/References:

[1]李坤 褚蕾蕾 朱世东 吴小培.基于mu节律能量的运动意识分类研究[J].计算机技术与发展,2006,(08):157.
 LI Kun,CHU Lei-lei,ZHU Shi-dong,et al.Study of Classification of Motor Imageries Based on Energy of mu Rhythm of EEG[J].,2006,(05):157.
[2]黄丹丹,张少白.基于高时—频分辨率脑电信号特征提取方法分析[J].计算机技术与发展,2013,(02):135.
 HUANG Dan-dan,ZHANG Shao-bai.Electroencephalography Feature Extraction Analysis Based on High Time-frequency Resolution[J].,2013,(05):135.
[3]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(05):1.
[4]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(05):5.
[5]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(05):13.
[6]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(05):21.
[7]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(05):25.
[8]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(05):29.
[9]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(05):34.
[10]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(05):38.

更新日期/Last Update: 2015-07-27