[1]李尚靖[],朱琦[][],朱俊华[]. 基于压缩感知和正弦字典的语音编码新方案[J].计算机技术与发展,2015,25(04):188-192.
 LI Shang-jing[],ZHU Qi[][],ZHU Jun-hua[]. A New Scheme of Speech Coding Based on Compressed Sensing and Sinusoidal Dictionary[J].,2015,25(04):188-192.
点击复制

 基于压缩感知和正弦字典的语音编码新方案()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年04期
页码:
188-192
栏目:
应用开发研究
出版日期:
2015-04-10

文章信息/Info

Title:
 A New Scheme of Speech Coding Based on Compressed Sensing and Sinusoidal Dictionary
文章编号:
1673-629X(2015)04-0188-05
作者:
 李尚靖[1] 朱琦[1][2] 朱俊华[1]
 1.南京邮电大学 通信与信息工程学院;2. 南京邮电大学 江苏省无线通信重点实验室
Author(s):
 LI Shang-jing[1] ZHU Qi[1][2] ZHU Jun-hua[1]
关键词:
 压缩感知行阶梯观测矩阵正弦字典参数编码矢量量化
Keywords:
 compressed sensing row echelon matrixsinusoidal dictionaryparameter coding vector quantization
分类号:
TN912.3
文献标志码:
A
摘要:
 文中提出一种压缩感知框架采样下的语音编码方案。根据压缩感知原理,利用行阶梯矩阵投影产生的观测序列保留了部分语音信息的时域特征,利用正弦字典和匹配追踪算法对观测序列进行建模,对于每帧观测序列的模型参数,根据各自特性采用合适的编码方式进行编码。在解码端对解码后的观测序列利用基追踪算法重构合成语音,并后置低通滤波器提高合成语音的人耳听觉效果。仿真实验表明,提出的编码方案在2.8~5.7 kbps时得到的合成语音平均MOS分为2.81~3.23,在压缩感知框架下取得了较好的语音编码效果。
Abstract:
 A novel speech coding method based on compressed sensing is proposed in this paper. Based on compressed sensing theory,the row echelon matrix retains parts of speech time domain features in the measurements,and utilize a sinusoidal dictionary and matching pur-suit for measurements sequence modeling. The model parameters are encoded by appropriate methods respectively. At the decoder,basis pursuit algorithm employs the decoded measurements for synthesized speech reconstruction. A rear low-pass filter is adopted to improve auditory effects. Simulation results show the average MOS scores of the synthesis speech are between 2. 81~3. 23 in low bit rate (2. 8~5. 7 kbps),which achieves a preferable coding effect in compressed sensing framework.

相似文献/References:

[1]张爱华 薄禄裕 盛飞 杨培.基于小波变换的压缩感知在图像加密中的应用[J].计算机技术与发展,2011,(12):145.
 ZHANG Ai-hua,BO Lu-yu,SHENG Fei,et al.Compressed Sensing Based on Single Layer Wavelet Transform for Image Encryption[J].,2011,(04):145.
[2]王韦刚 庄伟胤.基于NIOS Ⅱ的图像压缩感知[J].计算机技术与发展,2012,(04):12.
 WANG Wei-gang,ZHUANG Wei-yin.Compressed Sensing of Image Based on NIOS Ⅱ[J].,2012,(04):12.
[3]王韦刚 胡海峰.基于压缩感知的协作频谱检测[J].计算机技术与发展,2012,(12):241.
 WANG Wei-gang,HU Hai-feng.Collaborative Spectrum Detection Based on Compressed Sensing[J].,2012,(04):241.
[4]张晓咏,熊承义,胡开云,等.基于灰度纹理信息的图像压缩感知编码与重构[J].计算机技术与发展,2013,(01):47.
[5]刘洋,季薇,侯晓赟.一种改进的基于 OMP 重建的宽带频谱感知算法[J].计算机技术与发展,2013,(01):99.
 LIU Yang,JI Wei,HOU Xiao-yun.A Modified Spectrum Sensing Algorithm for Wideband Cognitive Radio Based on OMP[J].,2013,(04):99.
[6]彭钰,侯晓赟.基于二维压缩感知的双选信道估计[J].计算机技术与发展,2013,(10):220.
 PENG Yu,HOU Xiao-yun.Doubly Selective Channel Estimation Based on Two Dimension Compressed Sensing[J].,2013,(04):220.
[7]李熔.基于截尾估计的概率估计方法[J].计算机技术与发展,2014,24(02):101.
 LI Rong.Probability Estimation Method Based on Truncated Estimation[J].,2014,24(04):101.
[8]李燕,王博.基于压缩感知的数据压缩与检测[J].计算机技术与发展,2014,24(03):198.
 LI Yan,WANG Bo.Data Compression and Detection Based on Compressive Sensing[J].,2014,24(04):198.
[9]周飞飞,李雷.小波高频子带变换裁剪阈值SAMP算法研究[J].计算机技术与发展,2014,24(05):83.
 ZHOU Fei-fei,LI Lei.Research on Clipping Threshold SAMP Algorithm Based on High Frequency Sub-band Wavelet Transform[J].,2014,24(04):83.
[10]刘正其,季薇.一种改进的基于BOMP的宽带频谱感知算法[J].计算机技术与发展,2014,24(06):118.
 LIU Zheng-qi,JI Wei.A Modified Spectrum Sensing Algorithm for Wideband Cognitive Radio Based on BOMP[J].,2014,24(04):118.
[11]徐志坚,邱晓晖. 采用压缩感知的协作多点信道反馈算法研究[J].计算机技术与发展,2014,24(10):221.
 XU Zhi-jian,QIU Xiao-hui. Study on Channel Feedback Algorithm Using Compressed Sensing for Coordinated Multiple Point[J].,2014,24(04):221.
[12]柯家龙,李继楼. 压缩感知中的投影矩阵优化算法[J].计算机技术与发展,2015,25(03):95.
 KE Jia-long,LI Ji-lou. Algorithm of Optimization for Projection Matrix in Compressive Sensing[J].,2015,25(04):95.
[13]郭海亮. 基于GEP算法的压缩感知语音观测序列建模[J].计算机技术与发展,2015,25(05):46.
 GUO Hai-liang. Speech Signals Measurements Sequence Modeling in Compressed Sensing Based on GEP[J].,2015,25(04):46.
[14]郭青青,李雷. 基于SiT-ROMP算法的视频封装帧压缩重构研究[J].计算机技术与发展,2015,25(08):113.
 GUO Qing-qing,LI Lei. Research on Compressing and Reconstructing of Encapsulated Video Frame Based on Self-iterative Threshold ROMP Algorithm[J].,2015,25(04):113.
[15]李继楼,柯家龙. 基于压缩感知的WSN数据压缩与重构[J].计算机技术与发展,2015,25(09):111.
 LI Ji-lou,KE Jia-long. Data Compression and Recovery of WSN Based on Compressive Sensing[J].,2015,25(04):111.
[16]钱阳,李雷. 一种基于新型KPCA算法的视频压缩感知算法[J].计算机技术与发展,2015,25(10):101.
 QIAN Yang,LI Lei. A Video Compressed Sensing Algorithm Based on Novel KPCA[J].,2015,25(04):101.
[17]玲玲,齐丽娜. 特征字典与自适应联合的BCS-UWB信道估计[J].计算机技术与发展,2015,25(12):195.
 WANG Ling-ling,QI Li-na. Ultra-wideband Channel Estimation Based on Bayesian Compressive Sensing of Eigen-based Dictionary and Adaptive Joint[J].,2015,25(04):195.
[18]孙君,孙照伟. 基于压缩感知的信道互易性补偿方法[J].计算机技术与发展,2015,25(12):210.
 SUN Jun,SUN Zhao-wei. A Compensation Method for Channel Non-reciprocity Based on Compressive Sensing[J].,2015,25(04):210.
[19]于云,周伟栋. 基于压缩感知的鲁棒性说话人识别参数研究[J].计算机技术与发展,2016,26(03):18.
 YU Yun,ZHOU Wei-dong. Research on Robust Speaker Recognition Parameters Based on Compressed Sensing[J].,2016,26(04):18.
[20]陈天宇,吴凡,马世杰,等. 基于CS和LS-SVM的入侵检测算法[J].计算机技术与发展,2016,26(05):99.
 CHEN Tian-yu,WU Fan,MA Shi-jie,et al. Intrusion Detection Algorithm Based on Compressed Sensing and Least Square Support Vector Machine[J].,2016,26(04):99.

更新日期/Last Update: 2015-06-05