[1]汪慧兰,毛晓辉,杨晶晶,等. 融合小波变换和SIFT特征的商标检索方法[J].计算机技术与发展,2015,25(04):89-92.
 WANG Hui-lan,MAO Xiao-hui,YANG Jing-jing,et al. Trademark Retrieval Method Combining Wavelet Transform and SIFT Features[J].,2015,25(04):89-92.
点击复制

 融合小波变换和SIFT特征的商标检索方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年04期
页码:
89-92
栏目:
智能、算法、系统工程
出版日期:
2015-04-10

文章信息/Info

Title:
 Trademark Retrieval Method Combining Wavelet Transform and SIFT Features
文章编号:
1673-629X(2015)04-0089-04
作者:
 汪慧兰毛晓辉杨晶晶杨卫中
 安徽师范大学 物理与电子信息学院
Author(s):
 WANG Hui-lan MAO Xiao-huiYANG Jing-jing YANG Wei-zhong
关键词:
 商标检索小波变换SIFT特征匹配检索性能
Keywords:
 trademark search wavelet transform SIFT feature matchingretrieval performance
分类号:
TP391.41
文献标志码:
A
摘要:
 针对基于SIFT特征的商标检索其计算量大、检索速度慢、效率低的不足,提出了一种融合小波变换和SIFT特征的商标检索方法。该方法先通过小波分解得到低频子图像并建立低频子图像库,在低频子图像上提取商标图像的SIFT特征,再逐一进行精确匹配,对相似度进行排序,输出检索结果。实验结果表明,该方法不仅保持了SIFT特征的良好描述能力,且减少了精确匹配的计算量,提高了匹配速度。融合小波变换和SIFT特征的商标检索方法有效地弥补了原算法的不足,表现出了更好的检索能力和性能。
Abstract:
 Trademark search based on SIFT has some shortcomings,such as the large amount of calculation,slow search speed,low effi-ciency and so on. A method for trademark search by integration of wavelet transform and SIFT features was proposed. First,get low-fre-quency sub-image by wavelet decomposition,and create a low-frequency sub-image database. Then,extract SIFT feature in the low-fre-quency sub-image after wavelet transform,do exact match one by one,and be sort of similarity,thus output search results. The experi-mental results show that this method not only maintains a good description of SIFT features,but also reduces the amount of calculation of precisely matching and improves matching speed. The trademark retrieval method combining wavelet transform and SIFT features can ef-fectively compensate for the deficiencies of the original algorithm,and show better search capabilities and performance.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(04):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(04):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(04):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(04):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(04):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(04):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(04):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(04):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(04):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(04):47.

更新日期/Last Update: 2015-06-04