[1]唐亚鹏. 基于自适应加权数据融合算法的数据处理[J].计算机技术与发展,2015,25(04):53-56.
 TANG Ya-peng. Data Processing Based on Adaptive Weighted Data Fusion Algorithm[J].,2015,25(04):53-56.
点击复制

 基于自适应加权数据融合算法的数据处理()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年04期
页码:
53-56
栏目:
智能、算法、系统工程
出版日期:
2015-04-10

文章信息/Info

Title:
 Data Processing Based on Adaptive Weighted Data Fusion Algorithm
文章编号:
1673-629X(2015)04-0053-04
作者:
 唐亚鹏
 西安科技大学 电控学院,
Author(s):
 TANG Ya-peng
关键词:
 数据处理误差数据融合自适应
Keywords:
 data processingerrordata fusionadaptive
分类号:
TP391
文献标志码:
A
摘要:
 为了对大量数据进行控制和管理,以反映真实的生产情况,文中提出了一种混合的数据处理方法。先用格罗贝斯判据剔除测量数据中的疏失误差,然后基于算术平均值与分批估计的融合算法对余下的数据进行预处理,最后在总均方误差最小的最优条件下,采用自适应加权融合算法对数据进行融合处理。把处理后的结果与其他算法进行比较,结果是采用混合算法的数据精度最高,误差最小。得出结论,采用这种混合的数据处理方法,能把大量数据融合为一个最接近真实情况的数据,反映了真实的生产过程。
Abstract:
 A hybrid data processing method is proposed in order to reflect the real production situation and large amounts of data needed to be controlled and managed. The negligent errors in the measurement data were excluded by Grobass criterion,then the rest of the data were preprocessed based on the arithmetic mean and the batch estimates,lastly the data were fused using adaptive weighted fusion algo-rithm in the condition of minimal mean square error. The three calculation results were compared with other algorithm. The results show that the data by hybrid algorithm has perfect accuracy and minimal error. The conclusion is that a lot of data can be fused to a datum re-flecting the real production process by using the hybrid method of data processing.

相似文献/References:

[1]李玲娟 郑少飞.基于数据处理的数据挖掘隐私保护技术分析[J].计算机技术与发展,2011,(03):94.
 LI Ling-juan,ZHENG Shao-fei.Analysis of Data Mining Privacy Preserving Technology Based on Data Processing[J].,2011,(04):94.
[2]史桂红.GPS和Google静态地图在自定位系统中的应用[J].计算机技术与发展,2013,(05):243.
 SHI Gui-hong.Application of GPS and Google Static Maps in Self-localization System[J].,2013,(04):243.
[3]梁宗保,胡怡然,张凯.桥梁健康监测信息的数据驱动处理方法研究[J].计算机技术与发展,2013,(10):258.
 LIANG Zong-bao[],HU Yi-ran[],ZHANG Kai[].Research of Data Drive Processing Method of Bridge Health Monitoring Information[J].,2013,(04):258.
[4]魏美荣,田泽,王宣明,等.一种1394总线监控器数据包处理关键技术研究[J].计算机技术与发展,2014,24(04):6.
 WEI Mei-rong,TIAN Ze,WANG Xuan-ming,et al.Research on Key Technologies of Packet Processing for a 1394 Bus Monitor[J].,2014,24(04):6.
[5]马磊,曹守军,张俊,等.基于数据处理的省级能源预测预警平台设计[J].计算机技术与发展,2014,24(06):40.
 MA Lei,CAO Shou-jun,ZHANG Jun,et al.Design of a Provincial Energy Forecast and Early Warning Platform Based on Data Processing[J].,2014,24(04):40.
[6]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(04):1.
[7]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(04):5.
[8]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(04):13.
[9]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(04):21.
[10]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(04):25.
[11]尚家宇,杨永,单家方,等. 基于Qt4的LHCD相位控制软件的设计[J].计算机技术与发展,2015,25(02):160.
 SHANG Jia-yu,YANG Yong,SHAN Jia-fang,et al. Design of Phase Control Software for LHCD System Based on Qt4[J].,2015,25(04):160.
[12]肖洁,袁嵩,谭天. 大数据时代数据隐私安全研究[J].计算机技术与发展,2016,26(05):91.
 XIAO Jie,YUAN Song,TAN Tian. Research on Data Privacy in Big Data Age[J].,2016,26(04):91.

更新日期/Last Update: 2015-06-04