[1]胡彬彬,吴绍春. 云服务流定制中的个性化资源推荐方法研究[J].计算机技术与发展,2015,25(03):108-113.
 HU Bin-bin,WU Shao-chun. Research on Personalized Resource Recommendation Method in Service-flow Customization[J].,2015,25(03):108-113.
点击复制

 云服务流定制中的个性化资源推荐方法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年03期
页码:
108-113
栏目:
智能、算法、系统工程
出版日期:
2015-03-10

文章信息/Info

Title:
 Research on Personalized Resource Recommendation Method in Service-flow Customization
文章编号:
1673-629X(2015)03-0108-06
作者:
 胡彬彬吴绍春
 上海大学 计算机工程与科学学院
Author(s):
 HU Bin-binWU Shao-chun
关键词:
 云服务流定制伙伴用户个性化资源推荐
Keywords:
 cloud service-flow customizationcompany userpersonalizedresource recommendation
分类号:
TP391
文献标志码:
A
摘要:
 文中针对数字海洋云平台服务流可视化定制过程中出现的问题,着力解决用户如何快速从海量资源中选择符合需要的资源的难题,提出了服务流定制过程中的个性化用户资源推荐模型。该模型利用已定制过的服务流提取用户的行为习惯信息,融合用户与资源、资源与资源之间的关系,同时结合伙伴用户的思想,将在使用资源方面具有相似偏好的用户联系起来,得到极具个性化的用户资源推荐列表。与此同时,文中在用户资源推荐模型的基础上提出一种个性化资源推荐算法。实验结果表明,该算法极大地提高了用户定制服务流的效率。
Abstract:
 Aiming at the problem during customization process in the digital ocean cloud service flow visualization,in order to solve the difficulty how to quickly address users to select the resources conforms to the need from huge amounts of resources,put forward the per-sonalized user resources recommended models in the process of service flow customization. The model uses the customized service-flow to extract the users behavior information and integrate the relationship between users and resource,resource and resource. Furthermore,it links users with the similar interesting in resources application to get the personalized resource recommendation list through the idea of company user. Meanwhile,based on the user-resource recommendation model,put forward a personalized resource recommendation algo-rithm. The experimental results show that the proposed algorithm greatly improves the efficiency of users service-flow customization.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(03):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(03):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(03):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(03):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(03):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(03):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(03):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(03):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(03):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(03):47.

更新日期/Last Update: 2015-05-04