[1]顾伟[][],傅德胜[][],蔡玮[]. 基于命题逻辑的关联规则挖掘算法[J].计算机技术与发展,2015,25(03):91-94.
 GU Wei[][],FU De-sheng[][],CAI Wei[]. Association Rules Mining Algorithm Based on Propositional Logic[J].,2015,25(03):91-94.
点击复制

 基于命题逻辑的关联规则挖掘算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年03期
页码:
91-94
栏目:
智能、算法、系统工程
出版日期:
2015-03-10

文章信息/Info

Title:
 Association Rules Mining Algorithm Based on Propositional Logic
文章编号:
1673-629X(2015)03-0091-04
作者:
 顾伟[1][2] 傅德胜[1][2] 蔡玮[3]
 1.南京信息工程大学 江苏省网络监控中心;2.南京信息工程大学 计算机与软件学院;3.南京工程学院 计算机工程学院院;
Author(s):
 GU Wei[1][2] FU De-sheng[1][2]CAI Wei[3]
关键词:
 数据挖掘关联规则命题逻辑关联性
Keywords:
 data miningassociation rulespropositional logiccorrelation
分类号:
TP311
文献标志码:
A
摘要:
 数据挖掘是从数据库中发现潜在有用知识或者感兴趣模式的过程。事务数据库中发现关联规则是最常见的数据挖掘,目的在于帮助市场决策者发现事务数据库中项目之间的关联性。对关联规则算法进行了研究,通过使用命题逻辑,在最小支持度值未能确定的情况下,直接推导项目之间的关系。该方法把关联规则和等价命题映射起来,形成一种对应关系。如果一个规则满足逻辑相等,那么该规则是一个相关关联规则。通过实例证明了文中提出的高度相关关联规则挖掘算法是有效的。实验也表明该挖掘算法比Apriori算法更有用。
Abstract:
 Data mining is the process found potentially useful knowledge or interest mode from the database. The association rules found in the transaction database is the most common data mining,which is intended to help decision makers of market find transaction database correlation between items. Association rules algorithm was studied by using propositional logic,in the case that minimum support value cannot be determined,directly derivate the relationship between the project. The association rules and equivalence proposition are mapped together in this way to form a corresponding relation. If a rule is satisfied logic are equal,the rule is a relevant association rules. Demon-strated by examples presented in this paper,the highly relevant association rule mining algorithm is effective. Experiments also show that the mining algorithm is more useful than Apriori algorithm.

相似文献/References:

[1]项响琴 汪彩梅.基于聚类高维空间算法的离群数据挖掘技术研究[J].计算机技术与发展,2010,(01):120.
 XIANG Xiang-qin,WANG Cai-mei.Study of Outlier Data Mining Based on CLIQUE Algorithm[J].,2010,(03):120.
[2]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(03):143.
[3]吉同路 柏永飞 王立松.住宅与房地产电子政务中数据挖掘的应用研究[J].计算机技术与发展,2010,(01):235.
 JI Tong-lu,BAI Yong-fei,WANG Li-song.Study and Application of Data Mining in E-government of House and Real Estate Industry[J].,2010,(03):235.
[4]杨静 张楠男 李建 刘延明 梁美红.决策树算法的研究与应用[J].计算机技术与发展,2010,(02):114.
 YANG Jing,ZHANG Nan-nan,LI Jian,et al.Research and Application of Decision Tree Algorithm[J].,2010,(03):114.
[5]赵裕啸 倪志伟 王园园 伍章俊.SQL Server 2005数据挖掘技术在证券客户忠诚度的应用[J].计算机技术与发展,2010,(02):229.
 ZHAO Yu-xiao,NI Zhi-wei,WANG Yuan-yuan,et al.Application of Data Mining Technology of SQL Server 2005 in Customer Loyalty Model in Securities Industry[J].,2010,(03):229.
[6]张笑达 徐立臻.一种改进的基于矩阵的频繁项集挖掘算法[J].计算机技术与发展,2010,(04):93.
 ZHANG Xiao-da,XU Li-zhen.An Advanced Frequent Itemsets Mining Algorithm Based on Matrix[J].,2010,(03):93.
[7]王爱平 王占凤 陶嗣干 燕飞飞.数据挖掘中常用关联规则挖掘算法[J].计算机技术与发展,2010,(04):105.
 WANG Ai-ping,WANG Zhan-feng,TAO Si-gan,et al.Common Algorithms of Association Rules Mining in Data Mining[J].,2010,(03):105.
[8]张广路 雷景生 吴兴惠.一种改进的Apriori关联规则挖掘算法(英文)[J].计算机技术与发展,2010,(06):84.
 ZHANG Guang-lu,LEI Jing-sheng,WU Xing-hui.An Improved Apriori Algorithm for Mining Association Rules[J].,2010,(03):84.
[9]吴楠 胡学钢.基于聚类分区的序列模式挖掘算法研究[J].计算机技术与发展,2010,(06):109.
 WU Nan,HU Xue-gang.Research on Clustering Partition-Based Approach of Sequential Pattern Mining[J].,2010,(03):109.
[10]吴青 傅秀芬.水平分布数据库的正负关联规则挖掘[J].计算机技术与发展,2010,(06):113.
 WU Qing,FU Xiu-fen.Positive and Negative Association Rules Mining on Horizontally Partitioned Database[J].,2010,(03):113.
[11]李蓉,周维柏. 基于多特征选取和类完全加权的入侵检测[J].计算机技术与发展,2014,24(07):145.
 LI Rong,ZHOU Wei-bai. Intrusion Detection Based on Multiple Feature Selection and Class Fully Weighted [J].,2014,24(03):145.
[12]占美星[],杨颖[],杨磊[]. 基于树结构多重最小支持度的挖掘算法研究[J].计算机技术与发展,2014,24(08):45.
 ZHAN Mei-xing[],YANG Ying[],YANG Lei[]. Study on Mining Algorithm Based on Tree Structure Multiple Minimum Supports[J].,2014,24(03):45.
[13]于海平[],林晓丽[],刘会超[]. 基于数据挖掘的移动广告个性化推荐研究[J].计算机技术与发展,2014,24(08):234.
 YU Hai-ping[],LIN Xiao-li[],LIU Hui-chao[]. Research of Mobile Internet Advertising Personalized Recommendation Based on Data Mining[J].,2014,24(03):234.
[14]孙媛,黄刚. 基于Hadoop平台的C4.5算法的分析与研究[J].计算机技术与发展,2014,24(11):83.
 SUN Yuan,HUANG Gang. Analysis and Study of C4 . 5 Algorithm Based on Hadoop Platform[J].,2014,24(03):83.
[15]牛永洁,薛苏琴. 基于PDFBox抽取学术论文信息的实现[J].计算机技术与发展,2014,24(12):61.
 NIU Yong-jie,XUE Su-qin. Realization of Extraction of Academic Papers Information Based on PDFBox[J].,2014,24(03):61.
[16]郑超,高茂庭,吴爱华. 基于RFID及其路径约束的生产检查流程控制[J].计算机技术与发展,2015,25(02):225.
 ZHENG Chao,GAO Mao-ting,WU Ai-hua. Production Testing Process Control Based on RFID with Path Constraint[J].,2015,25(03):225.
[17]陈运文,吴飞,吴庐山,等. 基于异常检测的时间序列研究[J].计算机技术与发展,2015,25(04):166.
 CHEN Yun-wen,WU Fei,WU Lu-shan,et al. Research on Time Series Based on Anomaly Detection[J].,2015,25(03):166.
[18]王晓鹏,武彤. 生产质量控制数据仓库模型设计与实现[J].计算机技术与发展,2015,25(06):181.
 WANG Xiao-peng,WU Tong. Design and Realization of Data Warehouse Model on Production Quality Control[J].,2015,25(03):181.
[19]王玉雷,李玲娟. 一种密度和划分结合的聚类算法[J].计算机技术与发展,2015,25(09):53.
 WANG Yu-le,LI Ling-juan. A Clustering Algorithm of Combination of Density and Division[J].,2015,25(03):53.
[20]李全. 适用于协议特征提取的多级T+序列树挖掘算法[J].计算机技术与发展,2015,25(10):71.
 LI Quan. Mining Algorithm Based on Multilevel T+ Sequence Tree for Protocol Signatures Extracting[J].,2015,25(03):71.

更新日期/Last Update: 2015-05-04