[1]黄蕾,邹海. 基于相位一致的多尺度金字塔图像特征提取[J].计算机技术与发展,2015,25(03):36-39.
 HUANG Lei,ZOU Hai. Image Feature Extraction Algorithm of Multi-scale Pyramid Based on Phase Congruency[J].,2015,25(03):36-39.
点击复制

 基于相位一致的多尺度金字塔图像特征提取()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年03期
页码:
36-39
栏目:
智能、算法、系统工程
出版日期:
2015-03-10

文章信息/Info

Title:
 Image Feature Extraction Algorithm of Multi-scale Pyramid Based on Phase Congruency
文章编号:
1673-629X(2015)03-0036-04
作者:
 黄蕾邹海
 安徽大学 计算机科学与技术学院
Author(s):
 HUANG LeiZOU Hai
关键词:
 特征提取相位一致多分辨多尺度金字塔
Keywords:
 feature extractionphase congruencymulti-resolutionmulti-scale pyramid
分类号:
TP391
文献标志码:
A
摘要:
 图像特征提取是数字图像处理与模式识别领域中的关键问题,各种特征提取方法层出不穷。相位一致图像特征提取方法是基于局部相位信息进行图像特征提取,具有亮度和对比度不变性的优点,但是在轮廓特征提取方面存在缺陷。考虑到多分辨率、多尺度对图像特征提取的影响,提出一种基于相位一致的多尺度金字塔图像特征提取算法,新算法的关键在于拉普拉斯金字塔的分解和多尺度特征图像的融合。实验结果表明,该算法在提取图像轮廓特征方面要优于传统的相位一致图像特征提取算法。
Abstract:
 Image feature extraction is the key issue in the field of digital image processing and pattern recognition. The feature extraction methods are emerging in endlessly. Phase congruency image feature extraction method is based on local phase information for feature ex-traction,which has advantage of brightness and contrast invariance,but there are still insufficient for contour feature extraction. In order to fully consider the influence of multi-resolution,multi-scale image,present a feature extraction algorithm of multi-scale pyramid based on the phase congruency. The key is Laplacian pyramid decomposition and multi-scale feature fusion. The experimental results show that the new algorithm is superior to phase congruency image feature extraction algorithm in the contour of image feature extracting.

相似文献/References:

[1]田昕辉 李成基.带有短语切分的中文文本分类方法[J].计算机技术与发展,2010,(01):5.
 TIAN Xin-hui,LEE Sung-kee.Phrase Segmentation for Chinese Text Classification[J].,2010,(03):5.
[2]何小娜 逄焕利.基于二维直方图和改进蚁群聚类的图像分割[J].计算机技术与发展,2010,(03):128.
 HE Xiao-na,PANG Huan-li.Image Segmentation Based on Improved Ant Colony Clustering and Two- Dimensional Histogram[J].,2010,(03):128.
[3]罗林波 陈绮.氨基酸序列特征提取方法研究[J].计算机技术与发展,2010,(02):206.
 LUO Lin-bo,CHEN Qi.Research of Feature Extraction Methods of Amino Acid Sequence[J].,2010,(03):206.
[4]姜鹤 陈丽亚.SVM文本分类中一种新的特征提取方法[J].计算机技术与发展,2010,(03):17.
 JIANG He,CHEN Li-ya.A New Feature Selection Method in SVM Text Categorization[J].,2010,(03):17.
[5]毛雁明 兰美辉 王运琼 冯乔生.一种改进的基于Harris的角点检测方法[J].计算机技术与发展,2009,(05):130.
 MAO Yan-ming,LAN Mei-hui,WANG Yun-qiong,et al.An Improved Corner Detection Method Based on Harris[J].,2009,(03):130.
[6]赵辉 张鹏.网络异常的主动检测与特征分析[J].计算机技术与发展,2009,(08):159.
 ZHAO Hui,ZHANG Peng.Active Detection and Feature Analysis About Network Anomaly[J].,2009,(03):159.
[7]汤婷 吴小培 项明.指纹图像增强与特征提取[J].计算机技术与发展,2009,(01):81.
 TANG Ting,WU Xiao-pei,XIANG Ming.Fingerprint Image Enhancement and Minutiae Extraction[J].,2009,(03):81.
[8]张国富 凌捷 彭辉 谷保平.基于支持向量机的手写签名研究[J].计算机技术与发展,2008,(05):57.
 ZHANG Guo-fu,LING Jie,PENG Hui,et al.Research of Handwritten Signature Based on SVM[J].,2008,(03):57.
[9]黄国宏 刘刚.一种新的基于Fisher准则的线性特征提取方法[J].计算机技术与发展,2008,(05):227.
 HUANG Guo-hong,LIU Gang.A New Linear Feature Extraction Method Based on Fisher Criterion[J].,2008,(03):227.
[10]黄国宏 刘刚.一种新的基于DCT变换的线性判别分析[J].计算机技术与发展,2008,(06):97.
 HUANG Guo-hong,LIU Gang.A Novel Linear Discriminant Analysis Based on DCT[J].,2008,(03):97.
[11]李春生[],苏晓伟[],魏军[],等. 基于支持向量机的抽油机井功图识别研究[J].计算机技术与发展,2014,24(08):215.
 LI Chun-sheng[],SU Xiao-wei[],WEI Jun[],et al. Research on Diagrams Identification of Pumping Unit Based on Support Vector Machine[J].,2014,24(03):215.
[12]汪昡紫,孙宪坤,刘锴. 一种图像边缘检测算法的改进和实现[J].计算机技术与发展,2014,24(09):108.
 WANG Xuan-zi,SUN Xian-kun,LIU Kai. Improvement and Implementation for an Image Edge Detection Algorithm[J].,2014,24(03):108.
[13]高翔,刘秀鹏,冯天天,等. 基于无线体域网的康复监测系统设计[J].计算机技术与发展,2014,24(09):234.
 GAO Xiang,LIU Xiu-peng,FENG Tian-tian,et al. Monitoring System Design for Rehabilitating Training Based on Wireless Body Area Network[J].,2014,24(03):234.
[14]陆明星,刘政怡,刘锋,等. 一种基于指纹生物特征识别系统[J].计算机技术与发展,2014,24(10):225.
 LU Ming-xing,LIU Zheng-yi,LIU Feng,et al. A Recognition System Based on Fingerprint Characteristic[J].,2014,24(03):225.
[15]谭松,高珏,刘有科,等. 基于对角线偏移的SURF算子改进[J].计算机技术与发展,2014,24(11):1.
 TAN Song,GAO Jue,LIU You-ke,et al. An Improvement of SURF Based on Diagonal Offset[J].,2014,24(03):1.
[16]陈静,邱晓晖,孙娜. 基于二维Gabor小波与SPP算法的人脸识别研究[J].计算机技术与发展,2014,24(11):110.
 CHEN Jing,QIU Xiao-hui,SUN Na. Research on Face Recognition Based on 2 D Gabor Wavelet and SPP Algorithm[J].,2014,24(03):110.
[17]丁洁[][],荆晓远[],姚永芳[],等. 局部统计不相关非线性鉴别变换[J].计算机技术与发展,2014,24(12):105.
 DING Jie[][],JING Xiao-yuan[],YAO Yong-fang[],et al. Local Uncorrelated Non-linear Discriminant Transform[J].,2014,24(03):105.
[18]张华伟[],阮进勇[][],丁广太[]. 万向椭圆描述的Mean-Shift算法[J].计算机技术与发展,2015,25(01):11.
 ZHANG Hua-wei[],NGUYEN Tien-dung][],DING Guang-tai[]. Mean-Shift Algorithm Described by Irregular Ellipse[J].,2015,25(03):11.
[19]凌若冰[],荆晓远[],吴飞[],等. 基于流形学习的正交稀疏保留投影鉴别分析[J].计算机技术与发展,2015,25(01):66.
 LING Ruo-bing[],JING Xiao-yuan[],WU Fei[],et al. Orthogonal Sparsity Preserving Discriminant Analysis Based on Manifold Learning[J].,2015,25(03):66.
[20]许肖,顾磊. 复杂背景下文本检测研究[J].计算机技术与发展,2015,25(03):40.
 XU Xiao,GU Lei. Research on Text Detection under Complex Background[J].,2015,25(03):40.

更新日期/Last Update: 2015-04-30