[1]田兴邦,华蓓,吕颖,等. 基于动态冲突度计算的敏感规则清洗算法[J].计算机技术与发展,2015,25(02):126-130.
 TIAN Xing-bang,HUA Bei,Lü Ying,et al. Sensitive-rule Sanitization Algorithm Based on Computing Dynamic Conflict Degree[J].,2015,25(02):126-130.
点击复制

 基于动态冲突度计算的敏感规则清洗算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年02期
页码:
126-130
栏目:
安全与防范
出版日期:
2015-02-10

文章信息/Info

Title:
 Sensitive-rule Sanitization Algorithm Based on Computing Dynamic Conflict Degree
文章编号:
1673-629X(2015)02-0126-05
作者:
 田兴邦华蓓吕颖钟诚吴昆明
 广西大学 计算机与电子信息学院
Author(s):
 TIAN Xing-bangHUA Bei Lü Ying ZHONG Cheng WU Kun-ming
关键词:
隐私保护关联规则挖掘动态冲突度数据清洗
Keywords:
 privacy preservingassociation rule miningdynamic degree of conflictdata sanitization
分类号:
TP301.6
文献标志码:
A
摘要:
 数据挖掘中的隐私泄漏问题一直备受关注,在确保隐私的前提下达到最佳挖掘效果是近年来数据挖掘领域的研究热点之一。为防止在数据挖掘中发生隐私泄漏等问题,基于隐私保护框架,提出一种支持动态计算冲突度的高效的敏感规则清洗算法。在隐藏敏感规则的同时,动态调整冲突交易的冲突度,以尽量减少对非敏感规则误隐藏的可能性。理论分析与实验结果表明,给出的算法隐藏失败率为零,且大幅度降低了误隐藏率,有效保护了敏感规则,显著改善了算法的清洗效果。
Abstract:
 The privacy leaking issue of data mining is always drawing tremendous attention. Realizing optimal mining effect without priva-cy leaking is one of the active issues in the field of data mining. In order to prevent privacy leaking during data mining,based on privacy enforcing framework,propose a sensitive rule sanitization algorithm that supports dynamic degree of conflict calculation,which reduces misses costs to the best via altering conflict transaction record dynamically while achieving good concealing purpose. Theoretical analysis and experiment results show that the presented algorithm can protect the sensitive rules effectively with no hiding failure and reduce re-markably the error hiding rate,which enhances the performance of the algorithm significantly.

相似文献/References:

[1]耿波 仲红 徐杰 闫娜娜.隐私保护的关联规则挖掘研究[J].计算机技术与发展,2009,(02):81.
 GENG Bo,ZHONG Hong,XU Jie,et al.Study on Privacy- Preserving Association Rule Mining[J].,2009,(02):81.
[2]何中胜 庄燕滨.基于Apriori&Fp—growth的频繁项集发现算法[J].计算机技术与发展,2008,(07):45.
 HE Zhong-sheng,ZHUANG Yan-bin.Algorithm of Mining Frequent Itemset Based on Apriori and Fp - growth[J].,2008,(02):45.
[3]张瑞 郑诚 陈娟娟.关联规则挖掘中的隐私保护研究[J].计算机技术与发展,2008,(10):13.
 ZHANG Rui,ZHENG Cheng,CFIEN Juan-juan.Research on Privacy Preserving in Association Rules Mining[J].,2008,(02):13.
[4]李志云 周国祥.一种基于MFP树的快速关联规则挖掘算法[J].计算机技术与发展,2007,(06):94.
 LI Zhi-yun,ZHOU Guo-xiang.A Fast Association Rule Mining Algorithm Based on MFP Tree[J].,2007,(02):94.
[5]李玲娟 郑少飞.基于数据处理的数据挖掘隐私保护技术分析[J].计算机技术与发展,2011,(03):94.
 LI Ling-juan,ZHENG Shao-fei.Analysis of Data Mining Privacy Preserving Technology Based on Data Processing[J].,2011,(02):94.
[6]杜定宇 王茜.一种基于中间代理的个性化推荐系统[J].计算机技术与发展,2011,(09):66.
 DU Ding-yu,WANG Qian.An Agent-Based Personalized Recommendation System[J].,2011,(02):66.
[7]杨宸 薛丹 周健.带空间特性的访问控制在汽车终端上的应用[J].计算机技术与发展,2012,(01):225.
 YANG Chen,XUE Dan,ZHOU Jian.Application of Role-Based Access Control with Spatial Character in Automobile Terminal[J].,2012,(02):225.
[8]韦琳 许峰.医疗网格隐私保护技术研究[J].计算机技术与发展,2012,(05):254.
 WEI Lin,XU Feng.Privacy Preservation in Heaithgrid:A Survey[J].,2012,(02):254.
[9]赵丹 杨庚.一种基于复数域的数据融合完整性保护算法[J].计算机技术与发展,2012,(08):150.
 ZHAO Dan,YANG Geng.A Complex Field-based Integrity-protecting Data Aggregation Algorithm[J].,2012,(02):150.
[10]楼巍 刘捷 严利民.协同进化算法在关联规则挖掘中的应用[J].计算机技术与发展,2012,(11):13.
 LOU Wei,LIU Jie,YAN Li-min.Applied Research on Association Rules Mining with Co-evolution Algorithm[J].,2012,(02):13.

更新日期/Last Update: 2015-04-28