[1]檀何凤,刘政怡. 模式分类方法比较研究[J].计算机技术与发展,2015,25(02):99-102.
 TAN He-feng,LIU Zheng-yi. Research on Comparison of Pattern Classification Method[J].,2015,25(02):99-102.
点击复制

 模式分类方法比较研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年02期
页码:
99-102
栏目:
智能、算法、系统工程
出版日期:
2015-02-10

文章信息/Info

Title:
 Research on Comparison of Pattern Classification Method
文章编号:
1673-629X(2015)02-0099-04
作者:
 檀何凤刘政怡
 安徽大学 计算机科学与技术学院
Author(s):
 TAN He-feng LIU Zheng-yi
关键词:
 模式分类UCI数据库数据分类模式识别
Keywords:
 pattern classificationUCI databasedata classificationpattern recognition
分类号:
TP39
文献标志码:
A
摘要:
 模式分类方法是模式识别的关键。文中重点研究了支持向量机、BP神经网络、K近邻、朴素贝叶斯、线性判别分析和二次判别分析共六种模式分类方法,并利用MATLAB对UCI上的数据集进行了分类测试,根据测试结果分析了数据集的样本数、特征数、类别数对每一种模式分类方法的准确率和运行时间的影响。结果表明,在对一些小数据进行分类时,可以采用朴素贝叶斯、K近邻、线性判别分析方法,而对于大的数据集,支持向量机、BP神经网络、二次判别分析分类方法则比较适合,但对运行时间要求严格的分类不能采用BP神经网络方法。
Abstract:
 Pattern classification method is the key to pattern recognition. It focuses on six pattern classification methods,including support vector machine,BP neural network,k-nearest neighbor,naive Bayes,linear discriminant analysis and quadratic discriminant analysis,and tested by using the MATLAB on UCI data sets. According to the results,analyze the influence of the number of samples,features,catego-ries from data sets to the accuracy and running time of six classification methods. The results showed that naive Bayes,k-nearest neigh-bor,linear discriminant analysis are suitable for small data sets,support vector machine,BP neural network,quadratic discriminant analysis for large data sets. However,when it is strict to the running time,cannot use the BP neural network.

相似文献/References:

[1]詹超 胡江洪.SVM在基因表达数据分类中的研究和应用[J].计算机技术与发展,2006,(03):107.
 ZHAN Chao,HU Jiang-hong.Research and Application of SVM in Classification of Gene Expression Data[J].,2006,(02):107.
[2]杨兴 朱大奇 桑庆兵.一种改进的ART型神经网络学习算法[J].计算机技术与发展,2006,(09):27.
 YANG Xing,ZHU Da-qi,SANG Qing-bing.An Improved ART Neural Network Learning Algorithm[J].,2006,(02):27.
[3]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(02):1.
[4]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(02):5.
[5]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(02):13.
[6]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(02):21.
[7]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(02):25.
[8]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(02):29.
[9]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(02):34.
[10]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(02):38.

更新日期/Last Update: 2015-04-28