[1]王添,姜麟,米允龙. 海量数据下不完备信息系统的知识约简算法[J].计算机技术与发展,2015,25(01):137-142.
 WANG Tian,JIANG Lin,MI Yun-long. Knowledge Reduction Algorithms of Incomplete Information System in Massive Datasets[J].,2015,25(01):137-142.
点击复制

 海量数据下不完备信息系统的知识约简算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年01期
页码:
137-142
栏目:
智能、算法、系统工程
出版日期:
2015-01-10

文章信息/Info

Title:
 Knowledge Reduction Algorithms of Incomplete Information System in Massive Datasets
文章编号:
1673-629X(2015)01-0137-06
作者:
 王添姜麟米允龙
 昆明理工大学 理学院
Author(s):
 WANG TianJIANG LinMI Yun-long
关键词:
 海量数据云计算粗糙集不完备信息系统约简MapReduce
Keywords:
 massive datacloud computingrough setincomplete information systemreduction MapReduce
分类号:
TP18
文献标志码:
A
摘要:
 面向大规模的数据进行知识约简是近年来粗糙集理论研究的热点。传统不完备信息系统的知识约简是假设在初始时将所有需要处理的数据一次性地装入内存中,这明显不适合处理海量数据,更不适合处理含有缺失信息的海量数据。为此,深入剖析了带有缺失信息的数据特征,把缺失属性的值用该属性所有可能的取值表示,并结合知识约简算法中的可并行性,从属性(集)的可辨识性和不可辨识性出发,并在MapReduce框架下设计了可用来处理不完备信息系统的知识约简算法。实验结果表明,该算法是有效可行的,能够对不完备信息系统中的海量数据进行知识约简。
Abstract:
 Knowledge reduction for massive datasets has attracted many research interests in rough set theory. Traditional knowledge re-duction algorithms of incomplete information system assume that all the datasets can be loaded into the main memory,which are obvious-ly infeasible for large-scale datasets,especially for massive datasets with missing information. To this end,deeply analyze the characteris-tics of massive datasets with missing information,and allow the missing attribute value to take all possible values. Then,by combining the parallel computations used in classical knowledge reduction algorithms with the discernibility ( indiscernibility) of the attributes,a knowl-edge reduction algorithm is designed for incomplete information systems under MapReduce framework. The experimental results demon-strate that this algorithm is effective and feasible,which can efficiently process massive datasets for knowledge reduction in incomplete in-formation systems.

相似文献/References:

[1]夏奇思 王汝传.基于属性约简的粗糙集海量数据分割算法研究[J].计算机技术与发展,2010,(04):5.
 XIA Qi-si,WANG Ru-chuan.Mass Data Partition for Rough Set on Attribute Reduction Algorithm[J].,2010,(01):5.
[2]宫中樑 唐杰 武港山.基于预计算切片序列的动态体绘制技术[J].计算机技术与发展,2010,(08):5.
 GONG Zhong-liang,TANG Jie,WU Gang-shan.A Precomputed Slicing Based Volume Rendering Technique[J].,2010,(01):5.
[3]张莉 唐立文.基于四叉树的海量空间数据无缝组织研究[J].计算机技术与发展,2011,(01):77.
 ZHANG li,TANG Li-wen.Study of Organizing Seamless Great Capacity Spatial Data Based on Quadtree[J].,2011,(01):77.
[4]张辉 赵郁亮 徐江 孙伟华.基于Oracle数据库海量数据的查询优化研究[J].计算机技术与发展,2012,(02):165.
 ZHANG Hui,ZHAO Yu-liang,XU Jiang,et al.Query Optimization Research on Mass of Data Based on Oracle Database[J].,2012,(01):165.
[5]王柏 胡谷雨 罗健欣.数字地球系统中海量数据存储与传输方案研究[J].计算机技术与发展,2012,(03):81.
 WANG Bai,HU Gu-yu,LUO Jian-xin.Research of Massive Data Storage and Transmission for Digital Earth System[J].,2012,(01):81.
[6]贺瑶,王文庆,薛飞.基于云计算的海量数据挖掘研究[J].计算机技术与发展,2013,(02):69.
[7]江雨燕,李平.基于PFP-Growth算法的海量频繁项集挖掘[J].计算机技术与发展,2013,(09):63.
 JIANG Yu-yan,LI Ping.Mining Massive Frequent Items Based on PFP-Growth Algorithm[J].,2013,(01):63.
[8]梁宗保,胡怡然,张凯.桥梁健康监测信息的数据驱动处理方法研究[J].计算机技术与发展,2013,(10):258.
 LIANG Zong-bao[],HU Yi-ran[],ZHANG Kai[].Research of Data Drive Processing Method of Bridge Health Monitoring Information[J].,2013,(01):258.
[9]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(01):1.
[10]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(01):5.
[11]徐辉,王宁章,雷琳琳. 一种海量中文地址转化与切割的方法研究[J].计算机技术与发展,2015,25(11):6.
 XU Hui,WANG Ning-zhang,LEI Lin-lin. Research on a Massive Chinese Address Conversion and Cutting Method[J].,2015,25(01):6.
[12]杨伟超,马增军,耿卫. 基于Hubble.net的仓储系统设计与实现[J].计算机技术与发展,2017,27(10):181.
 YANG Wei-chao,MA Zeng-jun,GENG Wei. Design and Implementation of Massive Data Storage Service System Based on Hubble. net[J].,2017,27(01):181.

更新日期/Last Update: 2015-04-17