[1]凌若冰[],荆晓远[],吴飞[],等. 基于流形学习的正交稀疏保留投影鉴别分析[J].计算机技术与发展,2015,25(01):66-69.
 LING Ruo-bing[],JING Xiao-yuan[],WU Fei[],et al. Orthogonal Sparsity Preserving Discriminant Analysis Based on Manifold Learning[J].,2015,25(01):66-69.
点击复制

 基于流形学习的正交稀疏保留投影鉴别分析()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年01期
页码:
66-69
栏目:
智能、算法、系统工程
出版日期:
2015-01-10

文章信息/Info

Title:
 Orthogonal Sparsity Preserving Discriminant Analysis Based on Manifold Learning
文章编号:
1673-629X(2015)01-0066-04
作者:
 凌若冰[1] 荆晓远[1] 吴飞[2] 姚永芳[1] 李文倩[1]
 1.南京邮电大学 自动化学院;2.南京邮电大学 通信与信息工程学院
Author(s):
 LING Ruo-bing[1] JING Xiao-yuan[1] WU Fei[2] YAO Yong-fang[1] LI Wen-qian[1]
关键词:
 特征提取流形学习稀疏保留投影正交鉴别终止准则
Keywords:
 feature extractionmanifold learningsparsity preserving projectionsorthogonaldiscriminantterminating criterion
分类号:
TP301
文献标志码:
A
摘要:
 稀疏保留投影( SPP)是一种保留样本间的稀疏重构关系的特征提取方法。但是根据流形学习理论,考虑局部流形结构比考虑全局欧氏结构更重要。此外,SPP得到的不是一组正交的投影向量,特征间存在冗余信息。为解决该问题,文中提出一种改进的稀疏保留投影算法,在SPP中引入有监督的流形学习,使得所得投影空间正交,并用迭代的方式求解最优投影变换,称为基于流形学习的迭代正交稀疏保留鉴别分析( MLIOSDA)。同时提出一种终止准则终止迭代。在CAS-PEAL人脸数据库和PolyU掌纹数据库的实验结果表明,文中提出的方法与一些相关方法相比有效地提高了识别结果。
Abstract:
 Sparsity Preserving Projections ( SPP) is an effective feature extraction method,which can preserve the sparse reconstruction re-lations among samples. However,according to the manifold learning theory,the local manifold structure of samples is more important than the global Euclidean structure of samples. SPP cannot get a set of orthogonal projection vectors,and thus there exists redundant informa-tion among the obtained features. To address these problems of SPP,propose a novel approach called Manifold Learning based Iterative Orthogonal Sparsity preserving Discriminant Analysis ( MLIOSDA) ,which introduces the idea of manifold learning into SPP and obtains orthogonal projection space. Obtain optimal projection vectors in an iterative manner. Also provide a terminating criterion to finish the it-eration. Experimental results on CAS-PEAL and PolyU databases demonstrate that the proposed approach can effectively improve the rec-ognition results compared with some related methods.

相似文献/References:

[1]田昕辉 李成基.带有短语切分的中文文本分类方法[J].计算机技术与发展,2010,(01):5.
 TIAN Xin-hui,LEE Sung-kee.Phrase Segmentation for Chinese Text Classification[J].,2010,(01):5.
[2]何小娜 逄焕利.基于二维直方图和改进蚁群聚类的图像分割[J].计算机技术与发展,2010,(03):128.
 HE Xiao-na,PANG Huan-li.Image Segmentation Based on Improved Ant Colony Clustering and Two- Dimensional Histogram[J].,2010,(01):128.
[3]罗林波 陈绮.氨基酸序列特征提取方法研究[J].计算机技术与发展,2010,(02):206.
 LUO Lin-bo,CHEN Qi.Research of Feature Extraction Methods of Amino Acid Sequence[J].,2010,(01):206.
[4]姜鹤 陈丽亚.SVM文本分类中一种新的特征提取方法[J].计算机技术与发展,2010,(03):17.
 JIANG He,CHEN Li-ya.A New Feature Selection Method in SVM Text Categorization[J].,2010,(01):17.
[5]毛雁明 兰美辉 王运琼 冯乔生.一种改进的基于Harris的角点检测方法[J].计算机技术与发展,2009,(05):130.
 MAO Yan-ming,LAN Mei-hui,WANG Yun-qiong,et al.An Improved Corner Detection Method Based on Harris[J].,2009,(01):130.
[6]赵辉 张鹏.网络异常的主动检测与特征分析[J].计算机技术与发展,2009,(08):159.
 ZHAO Hui,ZHANG Peng.Active Detection and Feature Analysis About Network Anomaly[J].,2009,(01):159.
[7]汤婷 吴小培 项明.指纹图像增强与特征提取[J].计算机技术与发展,2009,(01):81.
 TANG Ting,WU Xiao-pei,XIANG Ming.Fingerprint Image Enhancement and Minutiae Extraction[J].,2009,(01):81.
[8]张国富 凌捷 彭辉 谷保平.基于支持向量机的手写签名研究[J].计算机技术与发展,2008,(05):57.
 ZHANG Guo-fu,LING Jie,PENG Hui,et al.Research of Handwritten Signature Based on SVM[J].,2008,(01):57.
[9]黄国宏 刘刚.一种新的基于Fisher准则的线性特征提取方法[J].计算机技术与发展,2008,(05):227.
 HUANG Guo-hong,LIU Gang.A New Linear Feature Extraction Method Based on Fisher Criterion[J].,2008,(01):227.
[10]黄国宏 刘刚.一种新的基于DCT变换的线性判别分析[J].计算机技术与发展,2008,(06):97.
 HUANG Guo-hong,LIU Gang.A Novel Linear Discriminant Analysis Based on DCT[J].,2008,(01):97.
[11]李春生[],苏晓伟[],魏军[],等. 基于支持向量机的抽油机井功图识别研究[J].计算机技术与发展,2014,24(08):215.
 LI Chun-sheng[],SU Xiao-wei[],WEI Jun[],et al. Research on Diagrams Identification of Pumping Unit Based on Support Vector Machine[J].,2014,24(01):215.
[12]汪昡紫,孙宪坤,刘锴. 一种图像边缘检测算法的改进和实现[J].计算机技术与发展,2014,24(09):108.
 WANG Xuan-zi,SUN Xian-kun,LIU Kai. Improvement and Implementation for an Image Edge Detection Algorithm[J].,2014,24(01):108.
[13]高翔,刘秀鹏,冯天天,等. 基于无线体域网的康复监测系统设计[J].计算机技术与发展,2014,24(09):234.
 GAO Xiang,LIU Xiu-peng,FENG Tian-tian,et al. Monitoring System Design for Rehabilitating Training Based on Wireless Body Area Network[J].,2014,24(01):234.
[14]陆明星,刘政怡,刘锋,等. 一种基于指纹生物特征识别系统[J].计算机技术与发展,2014,24(10):225.
 LU Ming-xing,LIU Zheng-yi,LIU Feng,et al. A Recognition System Based on Fingerprint Characteristic[J].,2014,24(01):225.
[15]谭松,高珏,刘有科,等. 基于对角线偏移的SURF算子改进[J].计算机技术与发展,2014,24(11):1.
 TAN Song,GAO Jue,LIU You-ke,et al. An Improvement of SURF Based on Diagonal Offset[J].,2014,24(01):1.
[16]陈静,邱晓晖,孙娜. 基于二维Gabor小波与SPP算法的人脸识别研究[J].计算机技术与发展,2014,24(11):110.
 CHEN Jing,QIU Xiao-hui,SUN Na. Research on Face Recognition Based on 2 D Gabor Wavelet and SPP Algorithm[J].,2014,24(01):110.
[17]丁洁[][],荆晓远[],姚永芳[],等. 局部统计不相关非线性鉴别变换[J].计算机技术与发展,2014,24(12):105.
 DING Jie[][],JING Xiao-yuan[],YAO Yong-fang[],et al. Local Uncorrelated Non-linear Discriminant Transform[J].,2014,24(01):105.
[18]张华伟[],阮进勇[][],丁广太[]. 万向椭圆描述的Mean-Shift算法[J].计算机技术与发展,2015,25(01):11.
 ZHANG Hua-wei[],NGUYEN Tien-dung][],DING Guang-tai[]. Mean-Shift Algorithm Described by Irregular Ellipse[J].,2015,25(01):11.
[19]黄蕾,邹海. 基于相位一致的多尺度金字塔图像特征提取[J].计算机技术与发展,2015,25(03):36.
 HUANG Lei,ZOU Hai. Image Feature Extraction Algorithm of Multi-scale Pyramid Based on Phase Congruency[J].,2015,25(01):36.
[20]许肖,顾磊. 复杂背景下文本检测研究[J].计算机技术与发展,2015,25(03):40.
 XU Xiao,GU Lei. Research on Text Detection under Complex Background[J].,2015,25(01):40.

更新日期/Last Update: 2015-04-17