[1]蒋宗礼,隋少鹏. 基于领域本体和位置关系的信息检索模型[J].计算机技术与发展,2015,25(01):6-10.
 JIANG Zong-li,SUI Shao-peng. Information Retrieval Model Based on Domain Ontology and Position Relationship[J].,2015,25(01):6-10.
点击复制

 基于领域本体和位置关系的信息检索模型()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年01期
页码:
6-10
栏目:
智能、算法、系统工程
出版日期:
2015-01-10

文章信息/Info

Title:
 Information Retrieval Model Based on Domain Ontology and Position Relationship
文章编号:
1673-629X(2015)01-0006-05
作者:
 蒋宗礼隋少鹏
 北京工业大学 计算机学院
Author(s):
 JIANG Zong-liSUI Shao-peng
关键词:
 检索模型向量空间模型本体相似度
Keywords:
 retrieval modelvector space modelontologysimilarity
分类号:
TP31
文献标志码:
A
摘要:
 向量空间模型是最常用的信息检索模型,它根据词频来计算文档之间的相关度,这种方法虽然能够满足用户的基本检索需求,但是对于检索要求较高的用户,其效果仍然不甚理想。文中在向量空间模型的基础上,首先通过领域本体和上层本体来计算特征词项之间的相似度,据此得出与查询词相关的词,在求词项频率和逆文档频率时考虑这些词,然后引入了词序相关度和词语相邻相关度这两个概念,把特征项的位置关系也考虑进来。实验结果表明,文中提出的模型相比原始向量空间模型,在准确率上有了较大的改善。这完全说明,与原始向量空间模型相比,文中提出的检索模型不仅考虑了与原有词项具有相似语义的词项,而且还考虑了词项顺序和词项相邻信息,从而更能符合用户的检索要求。
Abstract:
 Vector space model,which calculates the relatedness between documents through word frequency,is a frequently used informa-tion retrieval model. This method can meet the user’s basic retrieval requirements,but for users with higher requirements,its effect is still not very ideal. In this paper,based on vector space model,first calculate the similarity,which can produce words related to the query word,between words through the use of domain ontology and upper ontology. So can take advantage of the related word when calculate TF and IDF. Then by introducing the concept of word order relatedness and word adjacent relatedness,can embody the position relation-ship. The experimental results show that this method can improve the precision considerably. This fully shows that,compared with the o-riginal vector space model, the retrieval model proposed not only considers the terms which have similar semantics with the original words,but also thinks about the word order information and word adjacent information,thus can meet users’ retrieval requirements better.

相似文献/References:

[1]郑宏,李年,丁凯.XML检索方法研究[J].计算机技术与发展,2013,(10):15.
 ZHENG Hong,LI Nian,DING Kai.Research on XML Retrieval Approach[J].,2013,(01):15.
[2]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(01):1.
[3]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(01):5.
[4]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(01):13.
[5]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(01):21.
[6]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(01):25.
[7]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(01):29.
[8]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(01):34.
[9]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(01):38.
[10]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(01):43.

更新日期/Last Update: 2015-04-17